Catálogo de publicaciones - libros

Compartir en
redes sociales


A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystem

I.T. Baldwin ; M.M. Caldwell ; G. Heldmaier ; Robert B. Jackson ; O.L. Lange ; H.A. Mooney ; E.-D. Schulze ; U. Sommer ; James R. Ehleringer ; M. Denise Dearing ; Thure E. Cerling (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Ecology; Climate Change/Climate Change Impacts; Atmospheric Protection/Air Quality Control/Air Pollution; Atmospheric Sciences; Geoecology/Natural Processes; Plant Biochemistry

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-0-387-22069-7

ISBN electrónico

978-0-387-27048-7

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Science+Business Media, Inc. 2005

Tabla de contenidos

Herbivory in a World of Elevated CO

Richard L. Lindroth; M. Denise Dearing

Since the first appreciation of the widespread occurrence of acid rain in North America (), most public attention has focused on the acid component rather than effects from the associated elements in atmospheric deposition. The emphasis has been on freshwater ecosystems and forests in sensitive regions with relatively low buffering capacity. Effects of acid deposition on coastal marine ecosystems have usually not been considered, which makes sense in the context of acidity. Marine ecosystems are very well buffered, since they contain large amounts of dissolved carbonate and bicarbonate, and consequently are quite insensitive to acid inputs. Similarly, marine waters contain huge quantities of sulfate (∼ 28 mM) and thus are not sensitive at all to inputs of sulfate associated with acid deposition. On the other hand, nitrogen (N) pollution can cause severe degradation in coastal marine ecosystems, and the role of atmospheric deposition as a contributor of nitrogen to coastal waters has received increasing scrutiny over the past 15 years since Fisher and Oppenheimer (1991) noted that the nitrate anion associated with nitric acid in acid rain may be a major source of nitrogen to Chesapeake Bay.

Part 4. - Ecosystem Responses to a Future Atmospheric CO | Pp. 468-486

Borehole Temperatures and Climate Change: A Global Perspective

Robert N. Harris; David S. Chapman

Since the first appreciation of the widespread occurrence of acid rain in North America (), most public attention has focused on the acid component rather than effects from the associated elements in atmospheric deposition. The emphasis has been on freshwater ecosystems and forests in sensitive regions with relatively low buffering capacity. Effects of acid deposition on coastal marine ecosystems have usually not been considered, which makes sense in the context of acidity. Marine ecosystems are very well buffered, since they contain large amounts of dissolved carbonate and bicarbonate, and consequently are quite insensitive to acid inputs. Similarly, marine waters contain huge quantities of sulfate (∼ 28 mM) and thus are not sensitive at all to inputs of sulfate associated with acid deposition. On the other hand, nitrogen (N) pollution can cause severe degradation in coastal marine ecosystems, and the role of atmospheric deposition as a contributor of nitrogen to coastal waters has received increasing scrutiny over the past 15 years since Fisher and Oppenheimer (1991) noted that the nitrate anion associated with nitric acid in acid rain may be a major source of nitrogen to Chesapeake Bay.

Part 4. - Ecosystem Responses to a Future Atmospheric CO | Pp. 487-507