Catálogo de publicaciones - libros

Compartir en
redes sociales


A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystem

I.T. Baldwin ; M.M. Caldwell ; G. Heldmaier ; Robert B. Jackson ; O.L. Lange ; H.A. Mooney ; E.-D. Schulze ; U. Sommer ; James R. Ehleringer ; M. Denise Dearing ; Thure E. Cerling (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Ecology; Climate Change/Climate Change Impacts; Atmospheric Protection/Air Quality Control/Air Pollution; Atmospheric Sciences; Geoecology/Natural Processes; Plant Biochemistry

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-0-387-22069-7

ISBN electrónico

978-0-387-27048-7

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Science+Business Media, Inc. 2005

Tabla de contenidos

Evolution and Growth of Plants in a Low CO World

Joy K. Ward

Since the first appreciation of the widespread occurrence of acid rain in North America (), most public attention has focused on the acid component rather than effects from the associated elements in atmospheric deposition. The emphasis has been on freshwater ecosystems and forests in sensitive regions with relatively low buffering capacity. Effects of acid deposition on coastal marine ecosystems have usually not been considered, which makes sense in the context of acidity. Marine ecosystems are very well buffered, since they contain large amounts of dissolved carbonate and bicarbonate, and consequently are quite insensitive to acid inputs. Similarly, marine waters contain huge quantities of sulfate (∼ 28 mM) and thus are not sensitive at all to inputs of sulfate associated with acid deposition. On the other hand, nitrogen (N) pollution can cause severe degradation in coastal marine ecosystems, and the role of atmospheric deposition as a contributor of nitrogen to coastal waters has received increasing scrutiny over the past 15 years since Fisher and Oppenheimer (1991) noted that the nitrate anion associated with nitric acid in acid rain may be a major source of nitrogen to Chesapeake Bay.

Part 2. - Biotic Responses to Long-Term Changes in Atmospheric CO | Pp. 232-257

Environmentally Driven Dietary Adaptations in African Mammals

Thure E. Cerling; John M. Harris; Meave G. Leakey

Since the first appreciation of the widespread occurrence of acid rain in North America (), most public attention has focused on the acid component rather than effects from the associated elements in atmospheric deposition. The emphasis has been on freshwater ecosystems and forests in sensitive regions with relatively low buffering capacity. Effects of acid deposition on coastal marine ecosystems have usually not been considered, which makes sense in the context of acidity. Marine ecosystems are very well buffered, since they contain large amounts of dissolved carbonate and bicarbonate, and consequently are quite insensitive to acid inputs. Similarly, marine waters contain huge quantities of sulfate (∼ 28 mM) and thus are not sensitive at all to inputs of sulfate associated with acid deposition. On the other hand, nitrogen (N) pollution can cause severe degradation in coastal marine ecosystems, and the role of atmospheric deposition as a contributor of nitrogen to coastal waters has received increasing scrutiny over the past 15 years since Fisher and Oppenheimer (1991) noted that the nitrate anion associated with nitric acid in acid rain may be a major source of nitrogen to Chesapeake Bay.

Part 2. - Biotic Responses to Long-Term Changes in Atmospheric CO | Pp. 258-272

Terrestrial Mammalian Herbivore Response to Declining Levels of Atmospheric CO During the Cenozoic: Evidence from North American Fossil Horses (Family Equidae)

Bruce J. MacFadden

Since the first appreciation of the widespread occurrence of acid rain in North America (), most public attention has focused on the acid component rather than effects from the associated elements in atmospheric deposition. The emphasis has been on freshwater ecosystems and forests in sensitive regions with relatively low buffering capacity. Effects of acid deposition on coastal marine ecosystems have usually not been considered, which makes sense in the context of acidity. Marine ecosystems are very well buffered, since they contain large amounts of dissolved carbonate and bicarbonate, and consequently are quite insensitive to acid inputs. Similarly, marine waters contain huge quantities of sulfate (∼ 28 mM) and thus are not sensitive at all to inputs of sulfate associated with acid deposition. On the other hand, nitrogen (N) pollution can cause severe degradation in coastal marine ecosystems, and the role of atmospheric deposition as a contributor of nitrogen to coastal waters has received increasing scrutiny over the past 15 years since Fisher and Oppenheimer (1991) noted that the nitrate anion associated with nitric acid in acid rain may be a major source of nitrogen to Chesapeake Bay.

Part 2. - Biotic Responses to Long-Term Changes in Atmospheric CO | Pp. 273-292

CO, Grasses, and Human Evolution

Nicholaas J. van der Merwe

Since the first appreciation of the widespread occurrence of acid rain in North America (), most public attention has focused on the acid component rather than effects from the associated elements in atmospheric deposition. The emphasis has been on freshwater ecosystems and forests in sensitive regions with relatively low buffering capacity. Effects of acid deposition on coastal marine ecosystems have usually not been considered, which makes sense in the context of acidity. Marine ecosystems are very well buffered, since they contain large amounts of dissolved carbonate and bicarbonate, and consequently are quite insensitive to acid inputs. Similarly, marine waters contain huge quantities of sulfate (∼ 28 mM) and thus are not sensitive at all to inputs of sulfate associated with acid deposition. On the other hand, nitrogen (N) pollution can cause severe degradation in coastal marine ecosystems, and the role of atmospheric deposition as a contributor of nitrogen to coastal waters has received increasing scrutiny over the past 15 years since Fisher and Oppenheimer (1991) noted that the nitrate anion associated with nitric acid in acid rain may be a major source of nitrogen to Chesapeake Bay.

Part 2. - Biotic Responses to Long-Term Changes in Atmospheric CO | Pp. 293-328

The Carbon Cycle over the Past 1000 Years Inferred from the Inversion of Ice Core Data

Cathy Trudinger; Ian Enting; David Etheridge; Roger Francey; Peter Rayner

Since the first appreciation of the widespread occurrence of acid rain in North America (), most public attention has focused on the acid component rather than effects from the associated elements in atmospheric deposition. The emphasis has been on freshwater ecosystems and forests in sensitive regions with relatively low buffering capacity. Effects of acid deposition on coastal marine ecosystems have usually not been considered, which makes sense in the context of acidity. Marine ecosystems are very well buffered, since they contain large amounts of dissolved carbonate and bicarbonate, and consequently are quite insensitive to acid inputs. Similarly, marine waters contain huge quantities of sulfate (∼ 28 mM) and thus are not sensitive at all to inputs of sulfate associated with acid deposition. On the other hand, nitrogen (N) pollution can cause severe degradation in coastal marine ecosystems, and the role of atmospheric deposition as a contributor of nitrogen to coastal waters has received increasing scrutiny over the past 15 years since Fisher and Oppenheimer (1991) noted that the nitrate anion associated with nitric acid in acid rain may be a major source of nitrogen to Chesapeake Bay.

Part 3. - Atmospheric CO and Modern Ecosystems | Pp. 329-349

Remembrance of Weather Past: Ecosystem Responses to Climate Variability

David Schimel; Galina Churkina; Bobby H. Braswell; James Trenbath

Since the first appreciation of the widespread occurrence of acid rain in North America (), most public attention has focused on the acid component rather than effects from the associated elements in atmospheric deposition. The emphasis has been on freshwater ecosystems and forests in sensitive regions with relatively low buffering capacity. Effects of acid deposition on coastal marine ecosystems have usually not been considered, which makes sense in the context of acidity. Marine ecosystems are very well buffered, since they contain large amounts of dissolved carbonate and bicarbonate, and consequently are quite insensitive to acid inputs. Similarly, marine waters contain huge quantities of sulfate (∼ 28 mM) and thus are not sensitive at all to inputs of sulfate associated with acid deposition. On the other hand, nitrogen (N) pollution can cause severe degradation in coastal marine ecosystems, and the role of atmospheric deposition as a contributor of nitrogen to coastal waters has received increasing scrutiny over the past 15 years since Fisher and Oppenheimer (1991) noted that the nitrate anion associated with nitric acid in acid rain may be a major source of nitrogen to Chesapeake Bay.

Part 3. - Atmospheric CO and Modern Ecosystems | Pp. 350-368

Effects of Elevated CO on Keystone Herbivores in Modern Arctic Ecosystems

Scott R. McWilliams; James O. Leafloor

Since the first appreciation of the widespread occurrence of acid rain in North America (), most public attention has focused on the acid component rather than effects from the associated elements in atmospheric deposition. The emphasis has been on freshwater ecosystems and forests in sensitive regions with relatively low buffering capacity. Effects of acid deposition on coastal marine ecosystems have usually not been considered, which makes sense in the context of acidity. Marine ecosystems are very well buffered, since they contain large amounts of dissolved carbonate and bicarbonate, and consequently are quite insensitive to acid inputs. Similarly, marine waters contain huge quantities of sulfate (∼ 28 mM) and thus are not sensitive at all to inputs of sulfate associated with acid deposition. On the other hand, nitrogen (N) pollution can cause severe degradation in coastal marine ecosystems, and the role of atmospheric deposition as a contributor of nitrogen to coastal waters has received increasing scrutiny over the past 15 years since Fisher and Oppenheimer (1991) noted that the nitrate anion associated with nitric acid in acid rain may be a major source of nitrogen to Chesapeake Bay.

Part 3. - Atmospheric CO and Modern Ecosystems | Pp. 369-393

Modern and Future Forests in a Changing Atmosphere

Richard J. Norby; Linda A. Joyce; Stan D. Wullschleger

Since the first appreciation of the widespread occurrence of acid rain in North America (), most public attention has focused on the acid component rather than effects from the associated elements in atmospheric deposition. The emphasis has been on freshwater ecosystems and forests in sensitive regions with relatively low buffering capacity. Effects of acid deposition on coastal marine ecosystems have usually not been considered, which makes sense in the context of acidity. Marine ecosystems are very well buffered, since they contain large amounts of dissolved carbonate and bicarbonate, and consequently are quite insensitive to acid inputs. Similarly, marine waters contain huge quantities of sulfate (∼ 28 mM) and thus are not sensitive at all to inputs of sulfate associated with acid deposition. On the other hand, nitrogen (N) pollution can cause severe degradation in coastal marine ecosystems, and the role of atmospheric deposition as a contributor of nitrogen to coastal waters has received increasing scrutiny over the past 15 years since Fisher and Oppenheimer (1991) noted that the nitrate anion associated with nitric acid in acid rain may be a major source of nitrogen to Chesapeake Bay.

Part 4. - Ecosystem Responses to a Future Atmospheric CO | Pp. 394-414

Modern and Future Semi-Arid and Arid Ecosystems

M. Rebecca Shaw; Travis E. Huxman; Christopher P. Lund

Since the first appreciation of the widespread occurrence of acid rain in North America (), most public attention has focused on the acid component rather than effects from the associated elements in atmospheric deposition. The emphasis has been on freshwater ecosystems and forests in sensitive regions with relatively low buffering capacity. Effects of acid deposition on coastal marine ecosystems have usually not been considered, which makes sense in the context of acidity. Marine ecosystems are very well buffered, since they contain large amounts of dissolved carbonate and bicarbonate, and consequently are quite insensitive to acid inputs. Similarly, marine waters contain huge quantities of sulfate (∼ 28 mM) and thus are not sensitive at all to inputs of sulfate associated with acid deposition. On the other hand, nitrogen (N) pollution can cause severe degradation in coastal marine ecosystems, and the role of atmospheric deposition as a contributor of nitrogen to coastal waters has received increasing scrutiny over the past 15 years since Fisher and Oppenheimer (1991) noted that the nitrate anion associated with nitric acid in acid rain may be a major source of nitrogen to Chesapeake Bay.

Part 4. - Ecosystem Responses to a Future Atmospheric CO | Pp. 415-440

Effects of CO on Plants at Different Timescales

Belinda E. Medlyn; Ross E. McMurtrie

Since the first appreciation of the widespread occurrence of acid rain in North America (), most public attention has focused on the acid component rather than effects from the associated elements in atmospheric deposition. The emphasis has been on freshwater ecosystems and forests in sensitive regions with relatively low buffering capacity. Effects of acid deposition on coastal marine ecosystems have usually not been considered, which makes sense in the context of acidity. Marine ecosystems are very well buffered, since they contain large amounts of dissolved carbonate and bicarbonate, and consequently are quite insensitive to acid inputs. Similarly, marine waters contain huge quantities of sulfate (∼ 28 mM) and thus are not sensitive at all to inputs of sulfate associated with acid deposition. On the other hand, nitrogen (N) pollution can cause severe degradation in coastal marine ecosystems, and the role of atmospheric deposition as a contributor of nitrogen to coastal waters has received increasing scrutiny over the past 15 years since Fisher and Oppenheimer (1991) noted that the nitrate anion associated with nitric acid in acid rain may be a major source of nitrogen to Chesapeake Bay.

Part 4. - Ecosystem Responses to a Future Atmospheric CO | Pp. 441-467