Catálogo de publicaciones - libros
Control of Dead-time Processes
J. E. Normey-Rico E. F. Camacho
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2007 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-1-84628-828-9
ISBN electrónico
978-1-84628-829-6
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2007
Información sobre derechos de publicación
© Springer-Verlag London Limited 2007
Cobertura temática
Tabla de contenidos
Multivariable Dead-time Compensation
J. E. Normey-Rico; E. F. Camacho
Past studies profiling gene expression in MSCs have typically revealed a preponderance of expressed transcripts encoding structural proteins common in skeletal tissue and secreted factors that regulate hematopoiesis. Our SAGE analysis of the MSC transcriptome corroborated many of these previous findings, but also revealed that the cells express a plethora of transcripts encoding proteins involved in cell communication, motility, neural activity, angiogenesis and other biological processes that characterize marrow stroma. Therefore, the heterogeneity of the MSC transcriptome appears to reflect the nature and function of the different cell types that comprise this organ, the complexity of which is under appreciated. Our studies also indicate that the transcriptome of a clonal MSC population is characterized by a high percentage of expressed transcripts encoding proteins of an indeterminate nature. These findings reflect a basic lack of knowledge regarding the biology of MSCs, which attributes to the difficulty in ascribing a molecular phenotype to these stem cells. Comparative genomics studies indicate that transcripts uniquely expressed in MSCs include transcription factors and signalling molecules involved in limb bud morphogenesis, thereby providing clues to the regulatory mechanisms governing self-renewal and lineage commitment of MSCs. Deciphering these molecular pathways will further our understanding of the nature and biology of this unique stem cell population.
Pp. 343-373
Robust MPC for MIMO Dead-time Processes
J. E. Normey-Rico; E. F. Camacho
Past studies profiling gene expression in MSCs have typically revealed a preponderance of expressed transcripts encoding structural proteins common in skeletal tissue and secreted factors that regulate hematopoiesis. Our SAGE analysis of the MSC transcriptome corroborated many of these previous findings, but also revealed that the cells express a plethora of transcripts encoding proteins involved in cell communication, motility, neural activity, angiogenesis and other biological processes that characterize marrow stroma. Therefore, the heterogeneity of the MSC transcriptome appears to reflect the nature and function of the different cell types that comprise this organ, the complexity of which is under appreciated. Our studies also indicate that the transcriptome of a clonal MSC population is characterized by a high percentage of expressed transcripts encoding proteins of an indeterminate nature. These findings reflect a basic lack of knowledge regarding the biology of MSCs, which attributes to the difficulty in ascribing a molecular phenotype to these stem cells. Comparative genomics studies indicate that transcripts uniquely expressed in MSCs include transcription factors and signalling molecules involved in limb bud morphogenesis, thereby providing clues to the regulatory mechanisms governing self-renewal and lineage commitment of MSCs. Deciphering these molecular pathways will further our understanding of the nature and biology of this unique stem cell population.
Pp. 375-407
Control of Nonlinear Dead-time Processes
J. E. Normey-Rico; E. F. Camacho
Past studies profiling gene expression in MSCs have typically revealed a preponderance of expressed transcripts encoding structural proteins common in skeletal tissue and secreted factors that regulate hematopoiesis. Our SAGE analysis of the MSC transcriptome corroborated many of these previous findings, but also revealed that the cells express a plethora of transcripts encoding proteins involved in cell communication, motility, neural activity, angiogenesis and other biological processes that characterize marrow stroma. Therefore, the heterogeneity of the MSC transcriptome appears to reflect the nature and function of the different cell types that comprise this organ, the complexity of which is under appreciated. Our studies also indicate that the transcriptome of a clonal MSC population is characterized by a high percentage of expressed transcripts encoding proteins of an indeterminate nature. These findings reflect a basic lack of knowledge regarding the biology of MSCs, which attributes to the difficulty in ascribing a molecular phenotype to these stem cells. Comparative genomics studies indicate that transcripts uniquely expressed in MSCs include transcription factors and signalling molecules involved in limb bud morphogenesis, thereby providing clues to the regulatory mechanisms governing self-renewal and lineage commitment of MSCs. Deciphering these molecular pathways will further our understanding of the nature and biology of this unique stem cell population.
Pp. 409-427
Prediction for Control
J. E. Normey-Rico; E. F. Camacho
Past studies profiling gene expression in MSCs have typically revealed a preponderance of expressed transcripts encoding structural proteins common in skeletal tissue and secreted factors that regulate hematopoiesis. Our SAGE analysis of the MSC transcriptome corroborated many of these previous findings, but also revealed that the cells express a plethora of transcripts encoding proteins involved in cell communication, motility, neural activity, angiogenesis and other biological processes that characterize marrow stroma. Therefore, the heterogeneity of the MSC transcriptome appears to reflect the nature and function of the different cell types that comprise this organ, the complexity of which is under appreciated. Our studies also indicate that the transcriptome of a clonal MSC population is characterized by a high percentage of expressed transcripts encoding proteins of an indeterminate nature. These findings reflect a basic lack of knowledge regarding the biology of MSCs, which attributes to the difficulty in ascribing a molecular phenotype to these stem cells. Comparative genomics studies indicate that transcripts uniquely expressed in MSCs include transcription factors and signalling molecules involved in limb bud morphogenesis, thereby providing clues to the regulatory mechanisms governing self-renewal and lineage commitment of MSCs. Deciphering these molecular pathways will further our understanding of the nature and biology of this unique stem cell population.
Pp. 429-443