Catálogo de publicaciones - libros

Compartir en
redes sociales


Título de Acceso Abierto

Goods and Services of Marine Bivalves

Aad C. Smaal ; Joao G. Ferreira ; Jon Grant ; Jens K. Petersen ; Øivind Strand (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Freshwater & Marine Ecology; Ecosystems; Marine & Freshwater Sciences; Fish & Wildlife Biology & Management; Environmental Science and Engineering; Environmental Management

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No requiere 2019 SpringerLink acceso abierto

Información

Tipo de recurso:

libros

ISBN impreso

978-3-319-96775-2

ISBN electrónico

978-3-319-96776-9

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© The Editor(s) (if applicable) and The Author(s) 2019

Cobertura temática

Tabla de contenidos

Shells as Collector’s Items

Peter F. Duncan; Arne Ghys

Shell collecting, and the more scientific discipline of conchology, have a long history, and the general activity has made significant contributions to art, commerce and science since at least the seventeenth century. Modern shell collecting encompasses a wide range of molluscan families and species, including numerous bivalve taxa, and collections may be developed via a range of methods including self-collection, purchase from specialised dealers, exchange or from older collections. The fundamentals of building and maintaining a scientifically-valid specimen shell collection are discussed, including the role of conchological organisations in promoting shell collecting and increasing awareness of the activity.

The International shell trade can be locally significant, and some trends in shell collecting are presented, with a particular focus on the most popular bivalve families and online specimen-shell sales. The issues of sustainable harvesting, regulation and enforcement are discussed. However, the importance of shell collections and collectors in relation to molluscan taxonomy is also presented, as is their relevance to environmental awareness and potential role in enabling people to better interact with and understand the marine environment.

A number of important and highly collectable bivalve species are presented as examples.

Part III - Cultural Services | Pp. 381-411

Archaeology and Sclerochronology of Marine Bivalves

Paul G. Butler; Pedro S. Freitas; Meghan Burchell; Laurent Chauvaud

In a rapidly changing world, maintenance of the good health of the marine environment requires a detailed understanding of its mechanisms of change, and the ability to detect early signals of a shift away from the equilibrium state that we assume characterized it before there was any significant human impact. Given that instrumental measurements of the oceans go back no further than a few decades, the only way in which we can assess the long-term baseline variability that characterizes the pre-perturbation equilibrium state of the marine environment is by the use of proxy records contained in stratified or layered natural archives such as corals, fish otoliths and bivalve mollusc shells.

In this chapter we will look at the ways in which the environmental signals recorded in the shells of bivalve molluscs can be used to shed light on marine variability both in the present and over past centuries and millennia, and specifically how they can be used to study marine climate, the marine environment and the economic and cultural history of the relationship between humans and the oceans.

The chapter is divided into two parts: section one describes the morphological, geochemical and crystallographic techniques that are used to obtain information from the shells, while section two covers the use of bivalve shells in a wide range of applications, including ecosystem services, environmental monitoring, archaeology, climate reconstruction, and climate modeling.

Part III - Cultural Services | Pp. 413-444

Introduction of Assessments

Joao G. Ferreira; Jens K. Petersen

The quantitative assessment and evaluation of services is a complex topic, and there is controversy over what currency to use for comparisons. These issues are particularly challenging for e.g. regulatory and cultural services, whereas for provisioning, market mechanisms furnish the price. However, for a complete picture, an integrated evaluation of the the different services is needed. In this section, various case studies are presented to exemplify the application of different types of decision-making tools used to assess and evaluate services.

Part IV - Assessment of Services | Pp. 447-449

Bivalve Aquaculture Carrying Capacity: Concepts and Assessment Tools

Aad C. Smaal; L. A. van Duren

The carrying capacity concept for bivalve aquaculture is used to assess production potential of culture areas, and to address possible effects of the culture for the environment and for other users. Production potential is depending on physical and production carrying capacity of the ecosystem, while ecological and social carrying capacity determine to what extent the production capacity can be realized. According to current definitions, the ecological carrying capacity is the stocking or farm density of the exploited population above which unacceptable environmental impacts become apparent, and the social capacity is the level of farm development above which unacceptable social impacts are manifested. It can be disputed to what extent social and ecological capacities differ, as are social constructs. In the approach of carrying capacity, focus is often on avoiding adverse impacts of bivalve aquaculture. However, bivalve populations also have positive impacts on the ecosystem, such as stimulation of primary production through filtration and nutrient regeneration. These ecosystem services deserve more attention in proper estimation of carrying capacity and therefore we focus on both positive and negative feedbacks by the bivalves on the ecosystem. We review tools that are available to quantify carrying capacity. This varies from simple indices to complex models. We present case studies of the use of clearance and grazing ratio’s as simple carrying capacity indices. Applications depend on specific management questions in the respective areas, the availability of data and the type of decisions that need to be made.

For making decisions on bivalve aquaculture, standards, threshold values or levels of acceptable change (LAC) are used. The FAO framework for aquaculture is formulated as The Ecosystem Approach to Aquaculture. It implies stakeholder involvement, and a carrying capacity management where commercial stocks attribute in a balanced way to production, ecological and social goals. Simulation models are being developed as tools to predict the integrated effect of various levels of bivalve aquaculture for specific management goals, such as improved ecosystem resilience. In practice, bivalve aquaculture management is confronted with different competing stocks of cultured, wild, restoration and invasive origin. Scenario models have been reviewed that are used for finding the balance between maximizing production capacity and optimizing ecological carrying capacity in areas with bivalve aquaculture.

Part IV - Assessment of Services | Pp. 451-483

Farm-Scale Production Models

Carter R. Newell; Damian C. Brady; John Richardson

Farm-scale production models of bivalves have been used for site selection, optimization of culture practices, and the estimation of ecosystem goods and services. While all farm models require physical forcing through hydrodynamic models, the input of measured or modelled bivalve growth drivers, and a bioenergetic growth model which predicts individual growth and farm yield as a function of husbandry practices, some models are also embedded in a GIS system to allow for a “point and click” ability to test different locations and production strategies at various locations within the modeled domain. More generic Web-based models such as the Farm Aquaculture Resource Management are relatively simple to use, provide a link to larger ecosystem models, and provide direct estimates of ecosystem services. More detailed models, such as may be more data intensive and require detailed bathymetry, spatial velocity fields, information about boundary layer and aquaculture structure hydrodynamics and particle depletion. However, these models provide the detailed spatial and temporal results that can optimize farm productivity and assess benthic impacts. New approaches using high resolution remote sensing satellites and powerful physical-biogeochemical models using unstructured grids to link farm scale models with ecosystem models in a GIS platform have potential to provide improvements in the utility of farm scale models for the estimation of bivalve aquaculture ecosystem goods and services.

Part IV - Assessment of Services | Pp. 485-506

Ecosystem Models of Bivalve Aquaculture: Implications for Supporting Goods and Services

Jon Grant; Roberto Pastres

In this paper we focus on the role of ecosystem models in improving our understanding of the complex relationships between bivalve farming and the dynamics of lower trophic levels. To this aim, we review spatially explicit models of phytoplankton impacted by bivalve grazing and discuss the results of three case studies concerning an estuary (Baie des Veys, France), a bay, (Tracadie Bay, Prince Edward Island, Canada) and an open coastal area (Adriatic Sea, Emilia-Romagna coastal area, Italy). These models are intended to provide insight for aquaculture management, but their results also shed light on the spatial distribution of phytoplankton and environmental forcings of primary production. Even though new remote sensing technologies and remotely operated in situ sensors are likely to provide relevant data for assessing some the impacts of bivalve farming at an ecosystem scale, the results here summarized indicate that ecosystem modelling will remain the main tool for assessing ecological carrying capacity and providing management scenarios in the context of global drivers, such as climate change.

Part IV - Assessment of Services | Pp. 507-525

Spatial, Ecological and Social Dimensions of Assessments for Bivalve Farming Management

C. Bacher; A. Gangnery; P. Cugier; R. Mongruel; Øivind Strand; K. Frangoudes

The general purpose of assessment is to provide decision-makers with the best valuable data, information, and predictions with which management decisions will be supported. Using case studies taken from four scientific projects and dealing with the management of marine bivalve resources, lessons learned allowed identifying some issues regarding assessment approaches. The selected projects also introduced methodological or institutional frameworks: ecosystem approach to aquaculture (EAA), system approach framework (SAF), marine spatial planning (MSP), and valuation of ecosystem services (ES).

The study on ecosystem services linked ES to marine habitats and identified ES availability and vulnerability to pressures. The results were displayed as maps of resulting potential services with qualitative metrics. The vulnerability value is an alternative to monetary valuation and, in addition to identifying the most suitable areas for each type of ES, this metric allows identifying the management strategies that will most probably maintain or affect each individual ES.

The MSP example focused on bivalve farming activity and accounted for several criteria: habitat suitability, growth performance, environmental and regulation constraints and presence of other activities. The ultimate endpoint of such an approach is a map with qualitative values stating whether a location is suitable or not, depending on the weight given to each criterion.

In the EAA case study, the indicator was defined by the growth performance of cultivated bivalves in different locations. This indicator is affected by distant factors – e.g. populations of marine organisms competing for the same food resource, nutrient inputs from rivers, time to renew water bodies under the action of tidal currents. The role and interactions of these factors were assessed with a dynamical ecosystem model.

Examples illustrate that the assessment is often multi-dimensional, and that multiple variables would interact and affect the response to management options. Therefore, the existence of trade-offs, the definition of the appropriate spatial scale and resolution, the temporal dynamics and the distant effects of factors are keys to a policy-relevant assessment. EA and SAF examples show the interest of developing models relating response to input variables and testing scenarios. Dynamic models would be preferred when the relationship between input and output variables may be masked by non-linear effects, delay of responses or differences of scales.

When decision-making requires economic methods, monetary values are often of poor significance, especially for those ecosystem services whose loss could mean the end of life, and appear to be a comfortable oversimplification of reality of socio-ecological systems which cannot be summarized in single numbers. Alternative methods, such as the ones proposed in the SAF and ES examples, would preferably consider institutional analysis or multicriteria assessment rather than single monetary values.

Case studies also highlighted that credibility of assessment tools benefit from the association of stakeholders at different stages, among which: identification of the most critical policy issues; definition of system characteristics including ecological, economical and regulation dimensions; definition of modelling scenarios to sort out the most effective management options; assessment of models and indicators outputs.

Part IV - Assessment of Services | Pp. 527-549

Assessment of Nutrient Trading Services from Bivalve Farming

J. G. Ferreira; S. B. Bricker

This review examines key aspects of bivalve services, with a dual emphasis on commercial production and eutrophication control, and explores how the two can be combined by means of market instruments. Our focus is on regulatory trading services, in particular on ways in which nutrient credits can be traded for improved water quality management and better food security. We provide budgets for nutrient loading in Europe, North America, and China, factoring in point and non-point loading, and assess the contribution of finfish aquaculture. We then review the role of commercially cultivated bivalves for the same geographic areas, to assess the scope of combining farmed bivalves and top-down control of symptoms of nutrient enrichment. Water quality trading has existed as a concept for the past 40 years, but it can claim few success stories; we examine some of the challenges and potential solutions, as well as practical implementations, with a focus on non-point trading, for mitigation of diffuse nutrient loading. Finally, we discuss options for different indicators, and provide examples of how an assessment can be made, including the valuation of regulatory services provided by commercially grown bivalves. We conclude that the role of bivalves in nutrient credit trading programmes should form an integral part of ecosystem-based management. From the perspective of aquaculture enhancement, which is fundamental for improved food security, this is a triple-win, providing competitiveness of agriculture, eco-intensification of aquaculture, and greater consumer safety.

Part IV - Assessment of Services | Pp. 551-584