Catálogo de publicaciones - libros

Compartir en
redes sociales


Advances in Knowledge Discovery and Data Mining: 10th Pacific-Asia Conference, PAKDD 2006, Singapore, April 9-12, 2006, Proceedings

Wee-Keong Ng ; Masaru Kitsuregawa ; Jianzhong Li ; Kuiyu Chang (eds.)

En conferencia: 10º Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) . Singapore, Singapore . April 9, 2006 - April 12, 2006

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-33206-0

ISBN electrónico

978-3-540-33207-7

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2006

Tabla de contenidos

Mining Unexpected Associations for Signalling Potential Adverse Drug Reactions from Administrative Health Databases

Huidong Jin; Jie Chen; Chris Kelman; Hongxing He; Damien McAullay; Christine M. O’Keefe

Adverse reactions to drugs are a leading cause of hospitalisation and death worldwide. Most post-marketing Adverse Drug Reaction (ADR) detection techniques analyse spontaneous ADR reports which underestimate ADRs significantly. This paper aims to signal ADRs from administrative health databases in which data are collected routinely and are readily available. We introduce a new knowledge representation, Unexpected Temporal Association Rules (UTARs), to describe patterns characteristic of ADRs. Due to their and , existing techniques cannot perform effectively. To handle this unexpectedness we introduce a new interestingness measure, , and give a user-based exclusion technique for its calculation. Combining it with an event-oriented data preparation technique to handle infrequency, we develop a new algorithm, MUTARA, for mining simple UTARs. MUTARA effectively short-lists some known ADRs such as the disease esophagitis unexpectedly associated with the drug alendronate. Similarly, MUTARA signals atorvastatin followed by nizatidine or dicloxacillin which may be prescribed to treat its side effects stomach ulcer or urinary tract infection, respectively. Compared with association mining techniques, MUTARA signals potential ADRs more effectively.

- Innovative Applications | Pp. 867-876