Catálogo de publicaciones - libros
Groundwater and Ecosystems
Alper Baba ; Ken W. F. Howard ; Orhan Gunduz (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-1-4020-4736-7
ISBN electrónico
978-1-4020-4738-1
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Springer 2006
Cobertura temática
Tabla de contenidos
Ground water management at irrigated lands of uzbekistan and its influence on ecological system
R. Ikramov
Ion channels underlie the electrical activity of cells. Calcium channels have a unique functional role, because not only do they participate in this activity, they form the means bywhich electrical signals are converted to responses within the cell. Calcium concentrations in the cytoplasm of cells are maintained at a low level, and calcium channels activate quickly such that the opening of ion channels can rapidly change the cytoplasmic environment. Once inside the cell, calcium acts as a “second messenger” prompting responses by binding to a variety of calcium sensitive proteins. Calcium channels are known to play an important role in stimulating muscle contraction, in neurotransmitter secretion, gene regulation, activating other ion channels, controlling the shape and duration of action potentials and many other processes. Since calcium plays an integral role in cell function, and since excessive quantities can be toxic, its movement is tightly regulated and controlled through a large variety of mechanisms.
Pp. 145-152
Improved groundwater management strategies at the amu darya river
J. Froebrich; M. Ikramova; R. Razakov
Ion channels underlie the electrical activity of cells. Calcium channels have a unique functional role, because not only do they participate in this activity, they form the means bywhich electrical signals are converted to responses within the cell. Calcium concentrations in the cytoplasm of cells are maintained at a low level, and calcium channels activate quickly such that the opening of ion channels can rapidly change the cytoplasmic environment. Once inside the cell, calcium acts as a “second messenger” prompting responses by binding to a variety of calcium sensitive proteins. Calcium channels are known to play an important role in stimulating muscle contraction, in neurotransmitter secretion, gene regulation, activating other ion channels, controlling the shape and duration of action potentials and many other processes. Since calcium plays an integral role in cell function, and since excessive quantities can be toxic, its movement is tightly regulated and controlled through a large variety of mechanisms.
Pp. 153-165
The impact of groundwater production and exploitation on ecosystem in azerbaijan
R. Israfilov; Y. Israfilov; M. Ismailova
Ion channels underlie the electrical activity of cells. Calcium channels have a unique functional role, because not only do they participate in this activity, they form the means bywhich electrical signals are converted to responses within the cell. Calcium concentrations in the cytoplasm of cells are maintained at a low level, and calcium channels activate quickly such that the opening of ion channels can rapidly change the cytoplasmic environment. Once inside the cell, calcium acts as a “second messenger” prompting responses by binding to a variety of calcium sensitive proteins. Calcium channels are known to play an important role in stimulating muscle contraction, in neurotransmitter secretion, gene regulation, activating other ion channels, controlling the shape and duration of action potentials and many other processes. Since calcium plays an integral role in cell function, and since excessive quantities can be toxic, its movement is tightly regulated and controlled through a large variety of mechanisms.
Pp. 167-181
On modelling of ground and surface water interactions
J. Kania; A. Haladus; S. Witczak
Ion channels underlie the electrical activity of cells. Calcium channels have a unique functional role, because not only do they participate in this activity, they form the means bywhich electrical signals are converted to responses within the cell. Calcium concentrations in the cytoplasm of cells are maintained at a low level, and calcium channels activate quickly such that the opening of ion channels can rapidly change the cytoplasmic environment. Once inside the cell, calcium acts as a “second messenger” prompting responses by binding to a variety of calcium sensitive proteins. Calcium channels are known to play an important role in stimulating muscle contraction, in neurotransmitter secretion, gene regulation, activating other ion channels, controlling the shape and duration of action potentials and many other processes. Since calcium plays an integral role in cell function, and since excessive quantities can be toxic, its movement is tightly regulated and controlled through a large variety of mechanisms.
Pp. 183-194
Nitrogen leaching in an aquatic terrestrial transition zone
J. Kern; H. J. Hellebrand; Y. Kavdir
Ion channels underlie the electrical activity of cells. Calcium channels have a unique functional role, because not only do they participate in this activity, they form the means bywhich electrical signals are converted to responses within the cell. Calcium concentrations in the cytoplasm of cells are maintained at a low level, and calcium channels activate quickly such that the opening of ion channels can rapidly change the cytoplasmic environment. Once inside the cell, calcium acts as a “second messenger” prompting responses by binding to a variety of calcium sensitive proteins. Calcium channels are known to play an important role in stimulating muscle contraction, in neurotransmitter secretion, gene regulation, activating other ion channels, controlling the shape and duration of action potentials and many other processes. Since calcium plays an integral role in cell function, and since excessive quantities can be toxic, its movement is tightly regulated and controlled through a large variety of mechanisms.
Pp. 195-204
Interactions between groundwater – surface water and terrestrial eco-systems
S. Kirk
Ion channels underlie the electrical activity of cells. Calcium channels have a unique functional role, because not only do they participate in this activity, they form the means bywhich electrical signals are converted to responses within the cell. Calcium concentrations in the cytoplasm of cells are maintained at a low level, and calcium channels activate quickly such that the opening of ion channels can rapidly change the cytoplasmic environment. Once inside the cell, calcium acts as a “second messenger” prompting responses by binding to a variety of calcium sensitive proteins. Calcium channels are known to play an important role in stimulating muscle contraction, in neurotransmitter secretion, gene regulation, activating other ion channels, controlling the shape and duration of action potentials and many other processes. Since calcium plays an integral role in cell function, and since excessive quantities can be toxic, its movement is tightly regulated and controlled through a large variety of mechanisms.
Pp. 205-216
Natural water supply and fertilization interactions on crops yield in fragile agroecosystem
M. László
Ion channels underlie the electrical activity of cells. Calcium channels have a unique functional role, because not only do they participate in this activity, they form the means bywhich electrical signals are converted to responses within the cell. Calcium concentrations in the cytoplasm of cells are maintained at a low level, and calcium channels activate quickly such that the opening of ion channels can rapidly change the cytoplasmic environment. Once inside the cell, calcium acts as a “second messenger” prompting responses by binding to a variety of calcium sensitive proteins. Calcium channels are known to play an important role in stimulating muscle contraction, in neurotransmitter secretion, gene regulation, activating other ion channels, controlling the shape and duration of action potentials and many other processes. Since calcium plays an integral role in cell function, and since excessive quantities can be toxic, its movement is tightly regulated and controlled through a large variety of mechanisms.
Pp. 217-224
Groundwater fluxes in arid and semi-arid environments
M. W. Lubczynski
Ion channels underlie the electrical activity of cells. Calcium channels have a unique functional role, because not only do they participate in this activity, they form the means bywhich electrical signals are converted to responses within the cell. Calcium concentrations in the cytoplasm of cells are maintained at a low level, and calcium channels activate quickly such that the opening of ion channels can rapidly change the cytoplasmic environment. Once inside the cell, calcium acts as a “second messenger” prompting responses by binding to a variety of calcium sensitive proteins. Calcium channels are known to play an important role in stimulating muscle contraction, in neurotransmitter secretion, gene regulation, activating other ion channels, controlling the shape and duration of action potentials and many other processes. Since calcium plays an integral role in cell function, and since excessive quantities can be toxic, its movement is tightly regulated and controlled through a large variety of mechanisms.
Pp. 225-236
Water management in thessaly, central greece
N. Margaris; C. Galogiannis; M. Grammatikaki
Ion channels underlie the electrical activity of cells. Calcium channels have a unique functional role, because not only do they participate in this activity, they form the means bywhich electrical signals are converted to responses within the cell. Calcium concentrations in the cytoplasm of cells are maintained at a low level, and calcium channels activate quickly such that the opening of ion channels can rapidly change the cytoplasmic environment. Once inside the cell, calcium acts as a “second messenger” prompting responses by binding to a variety of calcium sensitive proteins. Calcium channels are known to play an important role in stimulating muscle contraction, in neurotransmitter secretion, gene regulation, activating other ion channels, controlling the shape and duration of action potentials and many other processes. Since calcium plays an integral role in cell function, and since excessive quantities can be toxic, its movement is tightly regulated and controlled through a large variety of mechanisms.
Pp. 237-242
Modeling of heavy metal contamination within an irrigated area
G. Melikadze; T. Chelidze; J. Leveinen
Ion channels underlie the electrical activity of cells. Calcium channels have a unique functional role, because not only do they participate in this activity, they form the means bywhich electrical signals are converted to responses within the cell. Calcium concentrations in the cytoplasm of cells are maintained at a low level, and calcium channels activate quickly such that the opening of ion channels can rapidly change the cytoplasmic environment. Once inside the cell, calcium acts as a “second messenger” prompting responses by binding to a variety of calcium sensitive proteins. Calcium channels are known to play an important role in stimulating muscle contraction, in neurotransmitter secretion, gene regulation, activating other ion channels, controlling the shape and duration of action potentials and many other processes. Since calcium plays an integral role in cell function, and since excessive quantities can be toxic, its movement is tightly regulated and controlled through a large variety of mechanisms.
Pp. 243-253