Catálogo de publicaciones - libros

Compartir en
redes sociales


The Method of Approximate Inverse: Theory and Applications

Thomas Schuster

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-71226-8

ISBN electrónico

978-3-540-71227-5

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2007

Cobertura temática

Tabla de contenidos

Ill-posed problems and regularization methods

Thomas Schuster

Part I - Inverse and Semi-discrete Problems | Pp. 5-9

Approximate inverse in L ^2-spaces

Thomas Schuster

Palabras clave: Invariance Property; Inversion Formula; Inversion Scheme; Approximate Inverse; Reconstruction Kernel.

Part I - Inverse and Semi-discrete Problems | Pp. 11-24

Approximate inverse in Hilbert spaces

Thomas Schuster

Palabras clave: Hilbert Space; Inversion Formula; Interpolation Operator; Observation Operator; Approximate Inverse.

Part I - Inverse and Semi-discrete Problems | Pp. 25-38

Approximate inverse in distribution spaces

Thomas Schuster

Palabras clave: Dual Space; Distribution Space; Observation Operator; Approximate Inverse; Reconstruction Kernel.

Part I - Inverse and Semi-discrete Problems | Pp. 39-47

Conclusion and perspectives

Thomas Schuster

Part I - Inverse and Semi-discrete Problems | Pp. 49-49

A semi-discrete setup for Doppler tomography

Thomas Schuster

Palabras clave: Sobolev Space; Doppler Shift; Point Evaluation; Doppler Tomography; Coordinate Plane.

Part II - Application to 3D Doppler Tomography | Pp. 55-61

Solving the semi-discrete problem

Thomas Schuster

Palabras clave: Tensor Product; Normal Equation; Adjoint Operator; Interpolation Operator; Approximate Inverse.

Part II - Application to 3D Doppler Tomography | Pp. 63-79

Convergence and stability

Thomas Schuster

Palabras clave: Regularization Parameter; Triangle Inequality; Reconstruction Error; Inversion Method; Sobolev Norm.

Part II - Application to 3D Doppler Tomography | Pp. 81-87

Approaches for defect correction

Thomas Schuster

Palabras clave: Dirichlet Problem; Boundary Element Method; Collocation Method; Neumann Problem; Newton Potential.

Part II - Application to 3D Doppler Tomography | Pp. 89-103

Conclusion and perspectives

Thomas Schuster

Part II - Application to 3D Doppler Tomography | Pp. 105-106