Catálogo de publicaciones - revistas

Compartir en
redes sociales


Título de Acceso Abierto

The Astrophysical Journal Letters (ApJL)

Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal Letters is an open access express scientific journal that allows astrophysicists to rapidly publish short notices of significant original research. ApJL articles are timely, high-impact, and broadly understandable.
Palabras clave – provistas por la editorial

astronomy; astrophysics

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde ene. 2010 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

2041-8205

ISSN electrónico

2041-8213

Editor responsable

American Astronomical Society (AAS)

Idiomas de la publicación

  • inglés

País de edición

Reino Unido

Información sobre licencias CC

https://creativecommons.org/licenses/by/4.0/

Cobertura temática

Tabla de contenidos

Deep XMM-Newton Observations of an X-ray Weak Broad Absorption Line Quasar at z = 6.5

Jinyi YangORCID; Xiaohui FanORCID; Feige WangORCID; Giorgio LanzuisiORCID; Riccardo NanniORCID; Massimo CappiORCID; George ChartasORCID; Mauro DadinaORCID; Roberto DecarliORCID; Xiangyu JinORCID; Charles R. KeetonORCID; Bram P. VenemansORCID; Fabian WalterORCID; Ran WangORCID; Xue-Bing WuORCID; Minghao YueORCID; Ann ZabludoffORCID

<jats:title>Abstract</jats:title> <jats:p>We report X-ray observations of the most distant known gravitationally lensed quasar, J0439+1634 at <jats:italic>z</jats:italic> = 6.52, which is also a broad absorption line (BAL) quasar, using the XMM-Newton Observatory. With a 130 ks exposure, the quasar is significantly detected as a point source at the optical position with a total of <jats:inline-formula> <jats:tex-math> <?CDATA ${358}_{-19}^{+19}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mn>358</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>19</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>19</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac45f2ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> net counts using the EPIC instrument. By fitting a power law plus Galactic absorption model to the observed spectra, we obtain a spectral slope of <jats:inline-formula> <jats:tex-math> <?CDATA ${\rm{\Gamma }}={1.45}_{-0.09}^{+0.10}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi mathvariant="normal">Γ</mml:mi> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>1.45</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.09</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.10</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac45f2ieqn2.gif" xlink:type="simple" /> </jats:inline-formula>. The derived optical-to-X-ray spectral slope <jats:italic>α</jats:italic> <jats:sub>ox</jats:sub> is <jats:inline-formula> <jats:tex-math> <?CDATA $-{2.07}_{-0.01}^{+0.01}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mo>−</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>2.07</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.01</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.01</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac45f2ieqn3.gif" xlink:type="simple" /> </jats:inline-formula>, suggesting that the X-ray emission of J0439+1634 is weaker by a factor of 18 than the expectation based on its 2500 Å luminosity and the average <jats:italic>α</jats:italic> <jats:sub>ox</jats:sub> versus luminosity relationship. This is the first time that an X-ray weak BAL quasar at <jats:italic>z</jats:italic> &gt; 6 has been observed spectroscopically. Its X-ray weakness is consistent with the properties of BAL quasars at lower redshift. By fitting a model including an intrinsic absorption component, we obtain intrinsic column densities of <jats:inline-formula> <jats:tex-math> <?CDATA ${N}_{{\rm{H}}}={2.8}_{-0.6}^{+0.7}\times {10}^{23}\,{\mathrm{cm}}^{-2}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>N</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">H</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>2.8</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.6</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.7</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>23</mml:mn> </mml:mrow> </mml:msup> <mml:mspace width="0.25em" /> <mml:msup> <mml:mrow> <mml:mi>cm</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac45f2ieqn4.gif" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math> <?CDATA ${N}_{{\rm{H}}}={4.3}_{-1.5}^{+1.8}\times {10}^{23}\,{\mathrm{cm}}^{-2}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>N</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">H</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>4.3</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1.5</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>1.8</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>23</mml:mn> </mml:mrow> </mml:msup> <mml:mspace width="0.25em" /> <mml:msup> <mml:mrow> <mml:mi>cm</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac45f2ieqn5.gif" xlink:type="simple" /> </jats:inline-formula>, assuming a fixed Γ of 1.9 and a free Γ, respectively. The intrinsic rest-frame 2–10 keV luminosity is derived as (9.4–15.1) × 10<jats:sup>43</jats:sup> erg s<jats:sup>−1</jats:sup>, after correcting for lensing magnification (<jats:italic>μ</jats:italic> = 51.3). The absorbed power-law model fitting indicates that J0439+1634 is the highest redshift obscured quasar with a direct measurement of the absorbing column density. The intrinsic high column density absorption can reduce the X-ray luminosity by a factor of 3–7, which also indicates that this quasar could be a candidate intrinsically X-ray weak quasar.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L25

High-frequency Magnetic Fluctuations in Space Plasmas and the Role of Electron Landau Damping

Vincenzo CarboneORCID; Daniele TelloniORCID; Fabio LepretiORCID; Antonio VecchioORCID

<jats:title>Abstract</jats:title> <jats:p>While low-frequency plasma fluctuations in the interplanetary space have been successfully described in the framework of classical turbulence, high-frequency fluctuations still represent a challenge for theoretical models. At these scales, kinetic plasma processes are at work, but although some of them have been identified in spacecraft measurements, their global effects on observable quantities are sometimes not fully understood. In this paper we present a new framework to the aim of describing the observed magnetic energy spectrum and directly identify in the data the presence of Landau damping as the main collisionless dissipative process in the solar wind.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L26

Pulse Peak Migration during the Outburst Decay of the Magnetar SGR 1830-0645: Crustal Motion and Magnetospheric Untwisting

George YounesORCID; Samuel K Lander; Matthew G. BaringORCID; Teruaki EnotoORCID; Chryssa KouveliotouORCID; Zorawar WadiasinghORCID; Wynn C. G. HoORCID; Alice K. HardingORCID; Zaven Arzoumanian; Keith GendreauORCID; Tolga GüverORCID; Chin-Ping HuORCID; Christian MalacariaORCID; Paul S. RayORCID; Tod E. StrohmayerORCID

<jats:title>Abstract</jats:title> <jats:p>Magnetars, isolated neutron stars with magnetic-field strengths typically ≳10<jats:sup>14</jats:sup> G, exhibit distinctive months-long outburst epochs during which strong evolution of soft X-ray pulse profiles, along with nonthermal magnetospheric emission components, is often observed. Using near-daily NICER observations of the magnetar SGR 1830-0645 during the first 37 days of a recent outburst decay, a pulse peak migration in phase is clearly observed, transforming the pulse shape from an initially triple-peaked to a single-peaked profile. Such peak merging has not been seen before for a magnetar. Our high-resolution phase-resolved spectroscopic analysis reveals no significant evolution of temperature despite the complex initial pulse shape, yet the inferred surface hot spots shrink during peak migration and outburst decay. We suggest two possible origins for this evolution. For internal heating of the surface, tectonic motion of the crust may be its underlying cause. The inferred speed of this crustal motion is ≲100 m day<jats:sup>−1</jats:sup>, constraining the density of the driving region to <jats:italic>ρ</jats:italic> ∼ 10<jats:sup>10</jats:sup> g cm<jats:sup>−3</jats:sup>, at a depth of ∼200 m. Alternatively, the hot spots could be heated by particle bombardment from a twisted magnetosphere possessing flux tubes or ropes, somewhat resembling solar coronal loops, that untwist and dissipate on the 30–40 day timescale. The peak migration may then be due to a combination of field-line footpoint motion (necessarily driven by crustal motion) and evolving surface radiation beaming. This novel data set paints a vivid picture of the dynamics associated with magnetar outbursts, yet it also highlights the need for a more generic theoretical picture where magnetosphere and crust are considered in tandem.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L27

Bursting Bubbles: Clustered Supernova Feedback in Local and High-redshift Galaxies

Matthew E. OrrORCID; Drummond B. FieldingORCID; Christopher C. HaywardORCID; Blakesley BurkhartORCID

<jats:title>Abstract</jats:title> <jats:p>We compare an analytic model for the evolution of supernova-driven superbubbles with observations of local and high-redshift galaxies, and the properties of intact H <jats:sc>i</jats:sc> shells in local star-forming galaxies. Our model correctly predicts the presence of superwinds in local star-forming galaxies (e.g., NGC 253) and the ubiquity of outflows near <jats:italic>z</jats:italic> ∼ 2. We find that high-redshift galaxies may “capture” 20%–50% of their feedback momentum in the dense ISM (with the remainder escaping into the nearby CGM), whereas local galaxies may contain ≲10% of their feedback momentum from the central starburst. Using azimuthally averaged galaxy properties, we predict that most superbubbles stall and fragment <jats:italic>within</jats:italic> the ISM, and that this occurs at, or near, the gas scale height. We find a consistent interpretation in the observed H <jats:sc>i</jats:sc> bubble radii and velocities, and predict that most will fragment within the ISM, and that those able to break out originate from short dynamical time regions (where the dynamical time is shorter than feedback timescales). Additionally, we demonstrate that models with constant star cluster formation efficiency per Toomre mass are inconsistent with the occurrence of outflows from high-<jats:italic>z</jats:italic> starbursts and local circumnuclear regions.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L28

A Robust Estimation of Lorentz Invariance Violation and Intrinsic Spectral Lag of Short Gamma-Ray Bursts

Shuo XiaoORCID; Shao-Lin XiongORCID; Yue Wang; Shuang-Nan ZhangORCID; He GaoORCID; Zhen ZhangORCID; Ce Cai; Qi-Bin Yi; Yi Zhao; You-Li TuoORCID; Xin-Qiao LiORCID; Xiang-Yang Wen; Zheng-Hua An; Wen-Xi Peng; Shi-Jie Zheng; Fan Zhang; Li-Ming SongORCID; Ti-Pei LiORCID

<jats:title>Abstract</jats:title> <jats:p>Gamma-ray bursts (GRBs) have been identified as one of the most promising sources for Lorentz invariance violation (LIV) studies due to their cosmological distance and energetic emission in wide energy bands. However, the arrival-time difference of GRB photons among different energy bands is affected not only by the LIV effect but also by the poorly known intrinsic spectral lags. In previous studies, assumptions of spectral lag have to be made which could introduce systematic errors. In this paper, we used a sample of 46 short GRBs (SGRBs), whose intrinsic spectra lags are much smaller than long GRBs, to better constrain the LIV. The observed spectral lags are derived between two fixed energy bands in the source rest frame rather than the observer frame. Moreover, the lags are calculated with the novel Li–CCF method, which is more robust than traditional methods. Our results show that, if we consider LIV as a linear energy dependence of the photon propagation speed in the data fit, then we obtain a robust limit of <jats:italic>E</jats:italic> <jats:sub>QG</jats:sub> &gt; 10<jats:sup>15</jats:sup> GeV (95% CL). If we assume no LIV effect in the keV–MeV energy range, the goodness of data fit is equivalently as well as the case with LIV and we can constrain the common intrinsic spectral lags of SGRBs to be 1.4 ± 0.5 ms (1<jats:italic>σ</jats:italic>), which is the most accurate measurement thus far.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L29

Impact of the SpaceX Starlink Satellites on the Zwicky Transient Facility Survey Observations

Przemek MrózORCID; Angel OtarolaORCID; Thomas A. PrinceORCID; Richard DekanyORCID; Dmitry A. DuevORCID; Matthew J. GrahamORCID; Steven L. GroomORCID; Frank J. MasciORCID; Michael S. MedfordORCID

<jats:title>Abstract</jats:title> <jats:p>There is a growing concern about an impact of low-Earth-orbit (LEO) satellite constellations on ground-based astronomical observations, in particular, on wide-field surveys in the optical and infrared. The Zwicky Transient Facility (ZTF), thanks to the large field of view of its camera, provides an ideal setup to study the effects of LEO megaconstellations—such as SpaceX’s Starlink—on astronomical surveys. Here, we analyze the archival ZTF observations collected between 2019 November and 2021 September and find 5301 satellite streaks that can be attributed to Starlink satellites. We find that the number of affected images is increasing with time as SpaceX deploys more satellites. Twilight observations are particularly affected—a fraction of streaked images taken during twilight has increased from less than 0.5% in late 2019 to 18% in 2021 August. We estimate that once the size of the Starlink constellation reaches 10,000, essentially all ZTF images taken during twilight may be affected. However, despite the increase in satellite streaks observed during the analyzed period, the current science operations of ZTF are not yet strongly affected. We also find that redesigning Starlink satellites (by installing visors intended to block sunlight from reaching the satellite antennas to prevent reflection) reduces their brightness by a factor of 4.6 ± 0.1 with respect to the original design in <jats:italic>g</jats:italic>, <jats:italic>r</jats:italic>, and <jats:italic>i </jats:italic>bands.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L30

No Significant Correlation between Line-emission and Continuum Substructures in the Molecules with ALMA at Planet-forming Scales Program

Haochang JiangORCID; Wei ZhuORCID; Chris W. OrmelORCID

<jats:title>Abstract</jats:title> <jats:p>Recently, the Molecules with ALMA at Planet-forming Scales (MAPS) ALMA Large Program reported a high number of line-emission substructures coincident with dust rings and gaps in the continuum emission, suggesting a causal link between these axisymmetric line-emission and dust-continuum substructures. To test the robustness of the claimed correlation, we compare the observed spatial overlap fraction in substructures with that from the null hypothesis, in which the overlap is assumed to arise from the random placement of line-emission substructures. Our results reveal that there is no statistically significant evidence for a universal correlation between line-emission and continuum substructures, questioning the frequently made link between continuum rings and pressure bumps. The analysis also clearly identifies outliers. The chemical rings and the dust gaps in MWC 480 appear to be strongly correlated (&gt;4<jats:italic>σ</jats:italic>), and the gaps in the CO isotopologues tend to moderately (∼3<jats:italic>σ</jats:italic>) correlate with dust rings.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L31

Black Hole Flares: Ejection of Accreted Magnetic Flux through 3D Plasmoid-mediated Reconnection

B. RipperdaORCID; M. Liska; K. ChatterjeeORCID; G. MusokeORCID; A. A. PhilippovORCID; S. B. MarkoffORCID; A. TchekhovskoyORCID; Z. YounsiORCID

<jats:title>Abstract</jats:title> <jats:p>Magnetic reconnection can power bright, rapid flares originating from the inner magnetosphere of accreting black holes. We conduct extremely high-resolution (5376 × 2304 × 2304 cells) general-relativistic magnetohydrodynamics simulations, capturing plasmoid-mediated reconnection in a 3D magnetically arrested disk for the first time. We show that an equatorial, plasmoid-unstable current sheet forms in a transient, nonaxisymmetric, low-density magnetosphere within the inner few Schwarzschild radii. Magnetic flux bundles escape from the event horizon through reconnection at the universal plasmoid-mediated rate in this current sheet. The reconnection feeds on the highly magnetized plasma in the jets and heats the plasma that ends up trapped in flux bundles to temperatures proportional to the jet’s magnetization. The escaped flux bundles can complete a full orbit as low-density hot spots, consistent with Sgr A* observations by the GRAVITY interferometer. Reconnection near the horizon produces sufficiently energetic plasma to explain flares from accreting black holes, such as the TeV emission observed from M87. The drop in the mass accretion rate during the flare and the resulting low-density magnetosphere make it easier for very-high-energy photons produced by reconnection-accelerated particles to escape. The extreme-resolution results in a converged plasmoid-mediated reconnection rate that directly determines the timescales and properties of the flare.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L32

Parker Solar Probe Evidence for the Absence of Whistlers Close to the Sun to Scatter Strahl and to Regulate Heat Flux

C. CattellORCID; A. Breneman; J. Dombeck; E. HansonORCID; M. Johnson; J. HalekasORCID; S. D. BaleORCID; T. Dudok de WitORCID; K. GoetzORCID; K. GoodrichORCID; D. MalaspinaORCID; M. PulupaORCID; T. CaseORCID; J. C. KasperORCID; D. LarsonORCID; M. StevensORCID; P. WhittleseyORCID

<jats:title>Abstract</jats:title> <jats:p>Using the Parker Solar Probe FIELDS bandpass-filter data and SWEAP electron data from Encounters 1 through 9, we show statistical properties of narrowband whistlers from ∼16 <jats:italic>R</jats:italic> <jats:sub>s</jats:sub> to ∼130 <jats:italic>R</jats:italic> <jats:sub>s</jats:sub>, and compare wave occurrence to electron properties including beta, temperature anisotropy, and heat flux. Whistlers are very rarely observed inside ∼28 <jats:italic>R</jats:italic> <jats:sub>s</jats:sub> (∼0.13 au). Outside 28 <jats:italic>R</jats:italic> <jats:sub>s</jats:sub>, they occur within a narrow range of parallel electron beta from ∼1 to 10, and with a beta-heat flux occurrence consistent with the whistler heat flux fan instability. Because electron distributions inside ∼30 <jats:italic>R</jats:italic> <jats:sub>s</jats:sub> display signatures of the ambipolar electric field, the lack of whistlers suggests that the modification of the electron distribution function associated with the ambipolar electric field or changes in other plasma properties must result in lower instability limits for the other modes (including the observed solitary waves and ion acoustic waves) that are observed close to the Sun. The lack of narrowband whistler-mode waves close to the Sun and in regions of either low (&lt;0.1) or high (&gt;10) beta is also significant for the understanding and modeling of the evolution of flare-accelerated electrons and the regulation of heat flux in astrophysical settings including other stellar winds, the interstellar medium, accretion disks, and the intragalaxy cluster medium.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L33

Plasma Emission Induced by Electron Beams in Weakly Magnetized Plasmas

Yao ChenORCID; Zilong Zhang; Sulan Ni; Chuanyang Li; Hao NingORCID; Xiangliang KongORCID

<jats:title>Abstract</jats:title> <jats:p>Previous studies on the beam-driven plasma emission process were done mainly for unmagnetized plasmas. Here we present fully kinetic electromagnetic particle-in-cell simulations to investigate this process in weakly magnetized plasmas of the solar corona conditions. The primary mode excited is the beam-Langmuir (BL) mode via classical bump-on-tail instability. Other modes include the Whistler (W) mode excited by electron cyclotron resonance instability, the generalized Langmuir (GL) waves that include a superluminal Z-mode component with smaller wavenumber <jats:italic>k</jats:italic> and a thermal Langmuir component with larger <jats:italic>k</jats:italic>, and the fundamental (F) and harmonic (H) branches of plasma emission. Further simulations of different mass and temperature ratios of electrons and protons indicate that the GL mode and the two escaping modes (F and H) correlate positively with the BL mode in intensity, supporting that they are excited through nonlinear wave–wave coupling processes involving the BL mode. We suggest that the dominant process is the decay of the primary BL mode. This is consistent with the standard theory of plasma emission. However, the other possibility of a Z + W → O–F coalescing process for the F emission cannot be ruled out completely.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. L34