Catálogo de publicaciones - revistas
Título de Acceso Abierto
The Astrophysical Journal Letters (ApJL)
Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal Letters is an open access express scientific journal that allows astrophysicists to rapidly publish short notices of significant original research. ApJL articles are timely, high-impact, and broadly understandable.Palabras clave – provistas por la editorial
astronomy; astrophysics
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde ene. 2010 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
2041-8205
ISSN electrónico
2041-8213
Editor responsable
American Astronomical Society (AAS)
Idiomas de la publicación
- inglés
País de edición
Reino Unido
Información sobre licencias CC
Cobertura temática
Tabla de contenidos
14 Her: A Likely Case of Planet–Planet Scattering
Daniella C. Bardalez Gagliuffi; Jacqueline K. Faherty; Yiting Li; Timothy D. Brandt; Lauryn Williams; G. Mirek Brandt; Christopher R. Gelino
<jats:title>Abstract</jats:title> <jats:p>In this Letter, we measure the full orbital architecture of the two-planet system around the nearby K0 dwarf 14 Herculis. 14 Her (HD 145675, HIP 79248) is a middle-aged (<jats:inline-formula> <jats:tex-math> <?CDATA ${4.6}_{-1.3}^{+3.8}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mn>4.6</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1.3</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>3.8</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac382cieqn1.gif" xlink:type="simple" /> </jats:inline-formula> Gyr) K0 star with two eccentric giant planets identified in the literature from radial velocity (RV) variability and long-term trends. Using archival RV data from Keck/HIRES in concert with Gaia-Hipparcos acceleration in the proper motion vector for the star, we have disentangled the mass and inclination of the b planet to <jats:inline-formula> <jats:tex-math> <?CDATA ${9.1}_{-1.1}^{+1.0}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mn>9.1</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1.1</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>1.0</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac382cieqn2.gif" xlink:type="simple" /> </jats:inline-formula> <jats:italic>M</jats:italic> <jats:sub>Jup</jats:sub> and <jats:inline-formula> <jats:tex-math> <?CDATA ${32.7}_{-3.2}^{+5.3}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mn>32.7</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>3.2</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>5.3</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac382cieqn3.gif" xlink:type="simple" /> </jats:inline-formula> degrees. Despite only partial phase coverage for the c planet’s orbit, we are able to constrain its mass and orbital parameters as well to <jats:inline-formula> <jats:tex-math> <?CDATA ${6.9}_{-1.0}^{+1.7}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mn>6.9</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1.0</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>1.7</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac382cieqn4.gif" xlink:type="simple" /> </jats:inline-formula> <jats:italic>M</jats:italic> <jats:sub>Jup</jats:sub> and <jats:inline-formula> <jats:tex-math> <?CDATA ${101}_{-33}^{+31}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mn>101</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>33</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>31</mml:mn> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac382cieqn5.gif" xlink:type="simple" /> </jats:inline-formula> degrees. We find that coplanarity of the b and c orbits is strongly disfavored. Combined with the age of the system and the comparable masses of its planets, this suggests that planet–planet scattering may be responsible for the current configuration of the system.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L43
A Nascent Tidal Dwarf Galaxy Forming within the Northern H i Streamer of M82
Imad Pasha; Deborah Lokhorst; Pieter G. van Dokkum; Seery Chen; Roberto Abraham; Johnny Greco; Shany Danieli; Tim Miller; Erin Lippitt; Ava Polzin; Zili Shen; Michael A. Keim; Qing Liu; Allison Merritt; Jielai Zhang
<jats:title>Abstract</jats:title> <jats:p>We identify a ∼600 pc wide region of active star formation located within a tidal streamer of M82 via H<jats:italic>α</jats:italic> emission (<jats:italic>F</jats:italic> <jats:sub>H<jats:italic>α</jats:italic> </jats:sub> ∼ 6.5 × 10<jats:sup>−14</jats:sup> erg s<jats:sup>−1</jats:sup> cm<jats:sup>−2</jats:sup>), using a pathfinder instrument based on the Dragonfly Telephoto Array. The object is kinematically decoupled from the disk of M82 as confirmed via Keck/LRIS spectroscopy and is spatially and kinematically coincident with an overdensity of H <jats:sc>i</jats:sc> and molecular hydrogen within the “northern H <jats:sc>i</jats:sc> streamer” induced by the passage of M81 several hundred Myr ago. From H <jats:sc>i</jats:sc> data, we estimate that ∼5 × 10<jats:sup>7</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> of gas is present in the specific overdensity coincident with the H<jats:italic>α</jats:italic> source. The object’s derived metallicity (12+<jats:inline-formula> <jats:tex-math> <?CDATA $\mathrm{log}({\rm{O}}/{\rm{H}})\simeq 8.6$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>log</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi mathvariant="normal">O</mml:mi> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:mi mathvariant="normal">H</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>≃</mml:mo> <mml:mn>8.6</mml:mn> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac3ca6ieqn1.gif" xlink:type="simple" /> </jats:inline-formula>), position within a gas-rich tidal feature, and morphology (600 pc diameter with multiple star-forming clumps), indicate that it is likely a tidal dwarf galaxy in the earliest stages of formation.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L21
The NANOGrav 12.5-year Data Set: Search for Non-Einsteinian Polarization Modes in the Gravitational-wave Background
Zaven Arzoumanian; Paul T. Baker; Harsha Blumer; Bence Bécsy; Adam Brazier; Paul R. Brook; Sarah Burke-Spolaor; Maria Charisi; Shami Chatterjee; Siyuan Chen; James M. Cordes; Neil J. Cornish; Fronefield Crawford; H. Thankful Cromartie; Megan E. DeCesar; Dallas M. DeGan; Paul B. Demorest; Timothy Dolch; Brendan Drachler; Justin A. Ellis; Elizabeth C. Ferrara; William Fiore; Emmanuel Fonseca; Nathan Garver-Daniels; Peter A. Gentile; Deborah C. Good; Jeffrey S. Hazboun; A. Miguel Holgado; Kristina Islo; Ross J. Jennings; Megan L. Jones; Andrew R. Kaiser; David L. Kaplan; Luke Zoltan Kelley; Joey Shapiro Key; Nima Laal; Michael T. Lam; T. Joseph W. Lazio; Duncan R. Lorimer; Tingting Liu; Jing Luo; Ryan S. Lynch; Dustin R. Madison; Alexander McEwen; Maura A. McLaughlin; Chiara M. F. Mingarelli; Cherry Ng; David J. Nice; Ken D. Olum; Timothy T. Pennucci; Nihan S. Pol; Scott M. Ransom; Paul S. Ray; Joseph D. Romano; Shashwat C. Sardesai; Brent J. Shapiro-Albert; Xavier Siemens; Joseph Simon; Magdalena S. Siwek; Renée Spiewak; Ingrid H. Stairs; Daniel R. Stinebring; Kevin Stovall; Jerry P. Sun; Joseph K. Swiggum; Stephen R. Taylor; Jacob E. Turner; Michele Vallisneri; Sarah J. Vigeland; Haley M. Wahl; Caitlin A. Witt
<jats:title>Abstract</jats:title> <jats:p>We search NANOGrav’s 12.5 yr data set for evidence of a gravitational-wave background (GWB) with all the spatial correlations allowed by general metric theories of gravity. We find no substantial evidence in favor of the existence of such correlations in our data. We find that scalar-transverse (ST) correlations yield signal-to-noise ratios and Bayes factors that are higher than quadrupolar (tensor-transverse, TT) correlations. Specifically, we find ST correlations with a signal-to-noise ratio of 2.8 that are preferred over TT correlations (Hellings and Downs correlations) with Bayesian odds of about 20:1. However, the significance of ST correlations is reduced dramatically when we include modeling of the solar system ephemeris systematics and/or remove pulsar J0030+0451 entirely from consideration. Even taking the nominal signal-to-noise ratios at face value, analyses of simulated data sets show that such values are not extremely unlikely to be observed in cases where only the usual TT modes are present in the GWB. In the absence of a detection of any polarization mode of gravity, we place upper limits on their amplitudes for a spectral index of <jats:italic>γ</jats:italic> = 5 and a reference frequency of <jats:italic>f</jats:italic> <jats:sub>yr</jats:sub> = 1 yr<jats:sup>−1</jats:sup>. Among the upper limits for eight general families of metric theories of gravity, we find the values of <jats:inline-formula> <jats:tex-math> <?CDATA ${A}_{\mathrm{TT}}^{95 \% }=(9.7\pm 0.4)\times {10}^{-16}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mi>A</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>TT</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>95</mml:mn> <mml:mo>%</mml:mo> </mml:mrow> </mml:msubsup> <mml:mo>=</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mn>9.7</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.4</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>16</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac401cieqn1.gif" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math> <?CDATA ${A}_{\mathrm{ST}}^{95 \% }=(1.4\pm 0.03)\times {10}^{-15}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mi>A</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>ST</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>95</mml:mn> <mml:mo>%</mml:mo> </mml:mrow> </mml:msubsup> <mml:mo>=</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1.4</mml:mn> <mml:mo>±</mml:mo> <mml:mn>0.03</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>15</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac401cieqn2.gif" xlink:type="simple" /> </jats:inline-formula> for the family of metric spacetime theories that contain both TT and ST modes.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L22
Symmetry Breaking in Dynamical Encounters in the Disks of Active Galactic Nuclei
Yi-Han Wang; Barry McKernan; Saavik Ford; Rosalba Perna; Nathan W. C. Leigh; Mordecai-Mark Mac Low
<jats:title>Abstract</jats:title> <jats:p>The disks of active galactic nuclei (AGNs) may be important sites of binary black hole (BBH) mergers. Here we show via numerical experiments with the high-accuracy, high-precision code <jats:monospace>SpaceHub</jats:monospace> that broken symmetry in dynamical encounters in AGN disks can lead to asymmetry between prograde and retrograde BBH mergers. The direction of the hardening asymmetry depends on the initial binary semimajor axis. Under the assumption that the spin of the BHs becomes aligned with the angular momentum of the disk on a short timescale compared with the encounter timescale, an asymmetric distribution of mass-weighted projected spin <jats:italic>χ</jats:italic> <jats:sub>eff</jats:sub> is predicted in LIGO–Virgo detections of BBH mergers from AGN disks. In particular, this model predicts that positive <jats:italic>χ</jats:italic> <jats:sub>eff</jats:sub> BBH mergers are most likely for encounters with massive tertiaries in migration traps at radial distances ≳500–600 gravitational radii.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L23
Luminous Late-time Radio Emission from Supernovae Detected by the Karl G. Jansky Very Large Array Sky Survey (VLASS)
Michael C. Stroh; Giacomo Terreran; Deanne L. Coppejans; Joe S. Bright; Raffaella Margutti; Michael F. Bietenholz; Fabio De Colle; Lindsay DeMarchi; Rodolfo Barniol Duran; Danny Milisavljevic; Kohta Murase; Kerry Paterson; Wendy L. Williams
<jats:title>Abstract</jats:title> <jats:p>We present a population of 19 radio-luminous supernovae (SNe) with emission reaching <jats:italic>L</jats:italic> <jats:sub> <jats:italic>ν</jats:italic> </jats:sub> ∼ 10<jats:sup>26</jats:sup>–10<jats:sup>29</jats:sup> erg s<jats:sup>−1</jats:sup> Hz<jats:sup>−1</jats:sup> in the first epoch of the Very Large Array Sky Survey (VLASS) at 2–4 GHz. Our sample includes one long gamma-ray burst, SN 2017iuk/GRB 171205A, and 18 core-collapse SNe detected at ≈1–60 yr after explosion. No thermonuclear explosion shows evidence for bright radio emission, and hydrogen-poor progenitors dominate the subsample of core-collapse events with spectroscopic classification at the time of explosion (79%). We interpret these findings in the context of the expected radio emission from the forward shock interaction with the circumstellar medium (CSM). We conclude that these observations require a departure from the single wind–like density profile (i.e., <jats:italic>ρ</jats:italic> <jats:sub>CSM</jats:sub> ∝ <jats:italic>r</jats:italic> <jats:sup>−2</jats:sup>) that is expected around massive stars and/or from a spherical Newtonian shock. Viable alternatives include the shock interaction with a detached, dense shell of CSM formed by a large effective progenitor mass-loss rate, <jats:inline-formula> <jats:tex-math> <?CDATA $\dot{M}\sim {10}^{-4}\mbox{--}{10}^{-1}\,{M}_{\odot }$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mrow> <mml:mover accent="true"> <mml:mi>M</mml:mi> <mml:mo>̇</mml:mo> </mml:mover> </mml:mrow> <mml:mo>∼</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:msup> <mml:mo>–</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mspace width="0.25em" /> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>⊙</mml:mo> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac375eieqn1.gif" xlink:type="simple" /> </jats:inline-formula> yr<jats:sup>−1</jats:sup> (for an assumed wind velocity of 1000 km s<jats:sup>−1</jats:sup>); emission from an off-axis relativistic jet entering our line of sight; or the emergence of emission from a newly born pulsar-wind nebula. The relativistic SN 2012ap that is detected 5.7 and 8.5 yr after explosion with <jats:italic>L</jats:italic> <jats:sub> <jats:italic>ν</jats:italic> </jats:sub> ∼ 10<jats:sup>28</jats:sup> erg s<jats:sup>−1</jats:sup> Hz<jats:sup>−1</jats:sup> might constitute the first detections of an off-axis jet+cocoon system in a massive star. However, none of the VLASS SNe with archival data points are consistent with our model off-axis jet light curves. Future multiwavelength observations will distinguish among these scenarios. Our VLASS source catalogs, which were used to perform the VLASS cross-matching, are publicly available at <jats:named-content xmlns:xlink="http://www.w3.org/1999/xlink" content-type="dataset" xlink:href="https://doi.org/10.5281/zenodo.4895112" xlink:type="simple">https://doi.org/10.5281/zenodo.4895112</jats:named-content>.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L24
The Deepest Chandra View of RBS 797: Evidence for Two Pairs of Equidistant X-ray Cavities
F. Ubertosi; M. Gitti; F. Brighenti; G. Brunetti; M. McDonald; P. Nulsen; B. McNamara; S. Randall; W. Forman; M. Donahue; A. Ignesti; M. Gaspari; S. Ettori; L. Feretti; E. L. Blanton; C. Jones; M. Calzadilla
<jats:title>Abstract</jats:title> <jats:p>We present the first results of a deep Chandra observation of the galaxy cluster RBS 797 whose previous X-ray studies revealed two pronounced X-ray cavities in the east–west (E–W) direction. Follow-up VLA radio observations of the central active galactic nucleus (AGN) uncovered different jet and lobe orientations, with radio lobes filling the E–W cavities and perpendicular jets showing emission in the north–south (N–S) direction over the same scale (≈30 kpc). With the new ∼427 ks total exposure, we report the detection of two additional, symmetric X-ray cavities in the N–S direction at nearly the same radial distance as the E–W ones. The newly discovered N–S cavities are associated with the radio emission detected at 1.4 and 4.8 GHz in archival VLA data, making RBS 797 the first galaxy cluster found to have four equidistant, centrally symmetric, radio-filled cavities. We derive the dynamical and radiative ages of the four cavities from X-ray and radio data, respectively, finding that the two outbursts are approximately coeval, with an age difference of ⪅10 Myr between the E–W and N–S cavities. We discuss two scenarios for the origin of the two perpendicular, equidistant cavity systems: either the presence of a binary AGN that is excavating coeval pairs of cavities in perpendicular directions or a fast (<10 Myr) jet reorientation event that produced subsequent, misaligned outbursts.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L25
Supernova Preshock Neutronization Burst as a Probe of Nonstandard Neutrino Interactions
Xu-Run Huang; Shuai Zha; Lie-Wen Chen
<jats:title>Abstract</jats:title> <jats:p>A core-collapse supernova (CCSN) provides a unique astrophysical site for studying neutrino–matter interactions. Prior to the shock-breakout neutrino burst during the collapse of the iron core, a preshock <jats:italic>ν</jats:italic> <jats:sub> <jats:italic>e</jats:italic> </jats:sub> burst arises from the electron capture of nuclei and it is sensitive to the low-energy coherent elastic neutrino–nucleus scattering (CE<jats:italic>ν</jats:italic>NS) which dominates the neutrino opacity. Since the CE<jats:italic>ν</jats:italic>NS depends strongly on nonstandard neutrino interactions (NSIs), which are completely beyond the standard model and yet to be determined, the detection of the preshock burst thus provides a clean way to extract the NSI information. Within the spherically symmetric general-relativistic hydrodynamic simulation for the CCSN, we investigate the NSI effects on the preshock burst. We find that the NSI can maximally enhance the peak luminosity of the preshock burst almost by a factor of three, reaching a value comparable to that of the shock-breakout burst. Future detection of the preshock burst will have critical implications on astrophysics, neutrino physics, and physics beyond the standard model.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L26
Milky Way–like Gas Excitation in an Ultrabright Submillimeter Galaxy at z = 1.6
N. Sulzenauer; H. Dannerbauer; A. Díaz-Sánchez; B. Ziegler; S. Iglesias-Groth; R. Rebolo
<jats:title>Abstract</jats:title> <jats:p>Based on observations with the IRAM 30 m and Yebes 40 m telescopes, we report evidence of the detection of Milky Way–like, low-excitation molecular gas, up to the transition CO(<jats:italic>J</jats:italic> = 5–4), in a distant, dusty star-forming galaxy at <jats:italic>z</jats:italic> <jats:sub>CO</jats:sub> = 1.60454. WISE J122651.0+214958.8 (alias SDSS J1226, the Cosmic Seahorse), is strongly lensed by a foreground galaxy cluster at <jats:italic>z</jats:italic> = 0.44 with a source magnification of <jats:italic>μ</jats:italic> = 9.5 ± 0.7. This galaxy was selected by cross-correlating near-to-mid-infrared colors within the full-sky AllWISE survey, originally aiming to discover rare analogs of the archetypical strongly lensed submillimeter galaxy SMM J2135–0102, the Cosmic Eyelash. We derive an apparent (i.e., not corrected for lensing magnification) rest-frame 8–1000 <jats:italic>μ</jats:italic>m infrared luminosity of <jats:inline-formula> <jats:tex-math> <?CDATA $\mu {\text{}}{L}_{\mathrm{IR}}={1.66}_{-0.04}^{+0.04}\times {10}^{13}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>μ</mml:mi> <mml:mtext mathvariant="italic" /> <mml:msub> <mml:mrow> <mml:mi>L</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>IR</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:msubsup> <mml:mrow> <mml:mn>1.66</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>0.04</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>+</mml:mo> <mml:mn>0.04</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>13</mml:mn> </mml:mrow> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac2ebaieqn1.gif" xlink:type="simple" /> </jats:inline-formula> <jats:italic>L</jats:italic> <jats:sub>⊙</jats:sub> and apparent star formation rate <jats:italic>μ</jats:italic>SFR<jats:sub>IR</jats:sub> = 2960 ± 70 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> yr<jats:sup>−1</jats:sup>. SDSS J1226 is ultrabright at <jats:italic>S</jats:italic> <jats:sub>350<jats:italic>μ</jats:italic>m</jats:sub> ≃ 170 mJy and shows similarly bright low-<jats:italic>J</jats:italic> CO line intensities as SMM J2135–0102, however, with exceptionally small CO(<jats:italic>J</jats:italic> = 5–4) intensity. We consider different scenarios to reconcile our observations with typical findings of high-<jats:italic>z</jats:italic> starbursts, and speculate about the presence of a previously unseen star formation mechanism in cosmic noon submillimeter galaxies. In conclusion, the remarkable low line luminosity ratio <jats:italic>r</jats:italic> <jats:sub>5,2</jats:sub> = 0.11 ± 0.02 is best explained by an extended, main-sequence star formation mode—representing a missing link between starbursts to low-luminosity systems during the epoch of peak star formation history.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L27
CDFS-6664: A Candidate of Lyman-continuum Emission at z ∼ 3.8 Detected by the Hubble Deep UV Legacy Survey
Fang-Ting Yuan; Zhen-Ya Zheng; Ruqiu Lin; Shuairu Zhu; P. T. Rahna
<jats:title>Abstract</jats:title> <jats:p>We report the detection of Lyman continuum (LyC) emission from the galaxy, CDFS-6664, at <jats:italic>z</jats:italic> = 3.797 in a sample of Lyman break galaxies with detected [O <jats:sc>iii</jats:sc>] emission lines. The LyC emission is detected with a significance ∼5<jats:italic>σ</jats:italic> in the F336W band of the Hubble Deep UV Legacy Survey, corresponding to the 650–770 Å rest frame. The light centroid of the LyC emission is offset from the galaxy center by about 0.″2 (1.4 pkpc). The Hubble deep images at longer wavelengths show that the emission is unlikely provided by low-redshift interlopers. The photometric and spectroscopic data show that the possible contribution of an active galactic nucleus is quite low. Fitting the spectral energy distribution of this source to stellar population synthesis models, we find that the galaxy is young (∼50 Myr) and actively forming stars with a rate of 52.1 ± 4.9 <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> yr<jats:sup>−1</jats:sup>. The significant star formation and the spatially offset LyC emission support a scenario where the ionizing photons escape from the low-density cavities in the ISM excavated by massive young stars. From the nebular model, we estimate the escape fraction of LyC photons to be 38% ± 7% and the corresponding intergalactic medium (IGM) transmission to be 60%, which deviates more than 3<jats:italic>σ</jats:italic> from the average transmission. The unusually high IGM transmission of LyC photons in CDFS-6664 may be related to a foreground type-2 quasar, CDF-202, at <jats:italic>z</jats:italic> = 3.7, with a projected separation of 1.′2 only. The quasar may have photoevaporated optically thick absorbers and enhance the transmission on the sightline of CDFS-6664.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L28
Critical Stellar Central Densities Drive Galaxy Quenching in the Nearby Universe
Bingxiao Xu; Yingjie Peng
<jats:title>Abstract</jats:title> <jats:p>We study the structural and environmental dependence of star formation on the plane of stellar mass versus central core density (Σ<jats:sub>1 kpc</jats:sub>) in the nearby universe. We study the central galaxies in the sparse environment and find a characteristic population-averaged Σ<jats:sub>1 kpc</jats:sub> ∼ 10<jats:sup>9</jats:sup>–10<jats:sup>9.2</jats:sup> <jats:italic>M</jats:italic> <jats:sub>⊙</jats:sub> kpc<jats:sup>−2</jats:sup>, above which quenching is operating. This <jats:inline-formula> <jats:tex-math> <?CDATA ${{\rm{\Sigma }}}_{1\,\mathrm{kpc}}^{\mathrm{crit}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mi mathvariant="normal">Σ</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> <mml:mspace width="0.25em" /> <mml:mi>kpc</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>crit</mml:mi> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac3a01ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> only weakly depends on the stellar mass, suggesting that the mass quenching of the central galaxies is closely related to the processes that operate in the central region rather than over the entire galaxies. For satellites, at a given stellar mass, environment quenching appears to operate in a similar fashion as mass quenching in centrals, also starting from galaxies with high Σ<jats:sub>1 kpc</jats:sub> to low Σ<jats:sub>1 kpc</jats:sub>, and <jats:inline-formula> <jats:tex-math> <?CDATA ${{\rm{\Sigma }}}_{1\,\mathrm{kpc}}^{\mathrm{crit}}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msubsup> <mml:mrow> <mml:mi mathvariant="normal">Σ</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>1</mml:mn> <mml:mspace width="0.25em" /> <mml:mi>kpc</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>crit</mml:mi> </mml:mrow> </mml:msubsup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjlac3a01ieqn2.gif" xlink:type="simple" /> </jats:inline-formula> becomes strongly mass-dependent, in particular in dense regions. This is because (1) more low-mass satellites are quenched by the environmental effects in denser regions and (2) at fixed stellar mass and environment, the environment-quenched satellites have, on average, larger Σ<jats:sub>1 kpc</jats:sub>, <jats:italic>M</jats:italic> <jats:sub>1 kpc</jats:sub>/<jats:italic>M</jats:italic> <jats:sub>⋆</jats:sub>, and Sérsic index <jats:italic>n</jats:italic>, and as well as smaller size. These results imply that either some dynamical processes change the structure of the satellites during quenching or the satellites with higher Σ<jats:sub>1 kpc</jats:sub> are more susceptible to environmental effects.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. L29