Catálogo de publicaciones - revistas
Título de Acceso Abierto
The Astrophysical Journal Supplement (ApJS)
Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal Supplement is an open access journal publishing significant articles containing extensive data or calculations. ApJS also supports Special Issues, collections of thematically related papers published simultaneously in a single volume.Palabras clave – provistas por la editorial
astronomy; astrophysics
Disponibilidad
Institución detectada | Período | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | desde dic. 1996 / hasta dic. 2023 | IOPScience |
Información
Tipo de recurso:
revistas
ISSN impreso
0067-0049
ISSN electrónico
1538-4365
Editor responsable
American Astronomical Society (AAS)
Idiomas de la publicación
- inglés
País de edición
Reino Unido
Información sobre licencias CC
Cobertura temática
Tabla de contenidos
The Splashback Radius of Halos from Particle Dynamics. III. Halo Catalogs, Merger Trees, and Host–Subhalo Relations
Benedikt Diemer
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 17
Dippers from the TESS Full-frame Images. I. Results of the First One Year Data and Discovery of a Runaway Dipper
Tomoyuki Tajiri; Hajime Kawahara; Masataka Aizawa; Michiko S. Fujii; Kohei Hattori; Yui Kasagi; Takayuki Kotani; Kento Masuda; Munetake Momose; Takayuki Muto; Ryou Ohsawa; Satoshi Takita
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 18
FPFS Shear Estimator: Systematic Tests on the Hyper Suprime-Cam Survey First-year Data
Xiangchong Li; Masamune Oguri; Nobuhiko Katayama; Wentao Luo; Wenting Wang; Jiaxin Han; Hironao Miyatake; Keigo Nakamura; Surhud More
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 19
ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP). II. Survey Overview: A First Look at 1.3 mm Continuum Maps and Molecular Outflows
Somnath Dutta; Chin-Fei Lee; Tie Liu; Naomi Hirano; Sheng-Yuan Liu; Ken’ichi Tatematsu; Kee-Tae Kim; Hsien Shang; Dipen Sahu; Gwanjeong Kim; Anthony Moraghan; Kai-Syun Jhan; Shih-Ying Hsu; Neal J. Evans; Doug Johnstone; Derek Ward-Thompson; Yi-Jehng Kuan; Chang Won Lee; Jeong-Eun Lee; Alessio Traficante; Mika Juvela; Charlotte Vastel; Qizhou Zhang; Patricio Sanhueza; Archana Soam; Woojin Kwon; Leonardo Bronfman; David Eden; Paul F. Goldsmith; Jinhua He; Yuefang Wu; Veli-Matti Pelkonen; Sheng-Li Qin; Shanghuo Li; Di Li
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 20
Renormalization Group Analysis of the Turbulent Hydromagnetic Dynamo: The Effect of Nonstationarity
Krzysztof A. Mizerski
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 21
The NASA Ames PAH IR Spectroscopic Database: The Laboratory Spectra
A. L. Mattioda; D. M. Hudgins; C. Boersma; C. W. Bauschlicher; A. Ricca; J. Cami; E. Peeters; F. Sánchez de Armas; G. Puerta Saborido; L. J. Allamandola
<jats:title>Abstract</jats:title> <jats:p>The astronomical emission features, formerly known as the unidentified infrared bands, are now commonly ascribed to polycyclic aromatic hydrocarbons (PAHs). The laboratory experiments and computational modeling performed at NASA Ames Research Center generated a collection of PAH IR spectra that have been used to test and refine the PAH model. These data have been assembled into the NASA Ames PAH IR Spectroscopic Database (PAHdb). PAHdb’s library of computed spectra, currently at version 3.20, contains data on more than 4000 species and the library of laboratory-measured spectra, currently at version 3.00, contains data on 84 species. The spectra can be perused and are available for download at <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://www.astrochemistry.org/pahdb/" xlink:type="simple">www.astrochemistry.org/pahdb/</jats:ext-link>. This paper introduces the library of laboratory-measured spectra. Although it has been part of PAHdb since its inception, the library of laboratory-measured spectra lacked a proper description in the literature. Here, the experimental methods used to obtain the data are described in detail, an overview of the contents of the experimental library is given, and specific tools developed to analyze and interpret astronomical spectra with the laboratory data are discussed. In addition, updates to the website, documentation and software tools since our last reporting are presented. Software tools to work with the spectroscopic libraries are being developed actively and are available at GitHub. Lastly, a comprehensive demonstration showing how the laboratory-measured data can be applied to explore absorption features in observations toward embedded sources is presented. This demonstration suggests that PAHs very likely contribute to interstellar absorption spectra associated with dense clouds and underscores the need for further IR spectroscopic studies of PAHs trapped in water ice.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 22
The K2 Galactic Archaeology Program Data Release 2: Asteroseismic Results from Campaigns 4, 6, and 7
Joel C. Zinn; Dennis Stello; Yvonne Elsworth; Rafael A. García; Thomas Kallinger; Savita Mathur; Benoît Mosser; Lisa Bugnet; Caitlin Jones; Marc Hon; Sanjib Sharma; Ralph Schönrich; Jack T. Warfield; Rodrigo Luger; Marc H. Pinsonneault; Jennifer A. Johnson; Daniel Huber; Victor Silva Aguirre; William J. Chaplin; Guy R. Davies; Andrea Miglio
<jats:title>Abstract</jats:title> <jats:p>Studies of Galactic structure and evolution have benefited enormously from Gaia kinematic information, though additional, intrinsic stellar parameters like age are required to best constrain Galactic models. Asteroseismology is the most precise method of providing such information for field star populations en masse, but existing samples for the most part have been limited to a few narrow fields of view by the CoRoT and Kepler missions. In an effort to provide well-characterized stellar parameters across a wide range in Galactic position, we present the second data release of red giant asteroseismic parameters for the K2 Galactic Archaeology Program (GAP). We provide <jats:inline-formula> <jats:tex-math> <?CDATA ${\nu }_{\max }$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>ν</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>max</mml:mi> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjsabbee3ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> and <jats:inline-formula> <jats:tex-math> <?CDATA ${\rm{\Delta }}\nu $?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi mathvariant="normal">Δ</mml:mi> <mml:mi>ν</mml:mi> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjsabbee3ieqn2.gif" xlink:type="simple" /> </jats:inline-formula> based on six independent pipeline analyses; first-ascent red giant branch (RGB) and red clump (RC) evolutionary state classifications from machine learning; and ready-to-use radius and mass coefficients, <jats:italic>κ</jats:italic> <jats:sub> <jats:italic>R</jats:italic> </jats:sub> and <jats:italic>κ</jats:italic> <jats:sub> <jats:italic>M</jats:italic> </jats:sub>, which, when appropriately multiplied by a solar-scaled effective temperature factor, yield physical stellar radii and masses. In total, we report 4395 radius and mass coefficients, with typical uncertainties of 3.3% (stat.) ± 1% (syst.) for <jats:italic>κ</jats:italic> <jats:sub> <jats:italic>R</jats:italic> </jats:sub> and 7.7% (stat.) ± 2% (syst.) for <jats:italic>κ</jats:italic> <jats:sub> <jats:italic>M</jats:italic> </jats:sub> among RGB stars, and 5.0% (stat.) ± 1% (syst.) for <jats:italic>κ</jats:italic> <jats:sub> <jats:italic>R</jats:italic> </jats:sub> and 10.5% (stat.) ± 2% (syst.) for <jats:italic>κ</jats:italic> <jats:sub> <jats:italic>M</jats:italic> </jats:sub> among RC stars. We verify that the sample is nearly complete—except for a dearth of stars with <jats:inline-formula> <jats:tex-math> <?CDATA ${\nu }_{\max }\lesssim 10\mbox{--}20\,\mu \mathrm{Hz}$?> </jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mrow> <mml:mi>ν</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>max</mml:mi> </mml:mrow> </mml:msub> <mml:mo>≲</mml:mo> <mml:mn>10</mml:mn> <mml:mo>–</mml:mo> <mml:mn>20</mml:mn> <mml:mspace width="0.25em" /> <mml:mi>μ</mml:mi> <mml:mi>Hz</mml:mi> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="apjsabbee3ieqn3.gif" xlink:type="simple" /> </jats:inline-formula>—by comparing to Galactic models and visual inspection. Our asteroseismic radii agree with radii derived from Gaia Data Release 2 parallaxes to within 2.2% ± 0.3% for RGB stars and 2.0% ± 0.6% for RC stars.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 23
Measurements of the Hyperfine Structure of Atomic Energy Levels in Co ii
Milan Ding; Juliet C. Pickering
<jats:title>Abstract</jats:title> <jats:p>Analysis of hyperfine structure constants of singly ionized cobalt (Co II) were performed on cobalt spectra measured by Fourier transform spectrometers in the region 3000–63,000 cm<jats:sup>−1</jats:sup> (33333 – 1587 Å). Fits to over 700 spectral lines led to measurements of 292 magnetic dipole hyperfine interaction <jats:italic>A</jats:italic> constants, with values between −32.5 mK and 59.5 mK (1 mK = 0.001 cm<jats:sup>−1</jats:sup>). Uncertainties of 255 <jats:italic>A</jats:italic> constants were between ±0.4 mK and ±3.0 mK, the remaining 37 ranged up to ±7 mK. The electric quadrupole hyperfine interaction <jats:italic>B</jats:italic> constant could be estimated for only one energy level. The number of Co II levels with known <jats:italic>A</jats:italic> values has now increased tenfold, improving and enabling the wider, more reliable, and accurate application of Co II in astronomical chemical abundance analyses.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 24
Legolas: A Modern Tool for Magnetohydrodynamic Spectroscopy
Niels Claes; Jordi De Jonghe; Rony Keppens
<jats:title>Abstract</jats:title> <jats:p>Magnetohydrodynamic (MHD) spectroscopy is central to many astrophysical disciplines, ranging from helio- to asteroseismology, over solar coronal (loop) seismology, to the study of waves and instabilities in jets, accretion disks, or solar/stellar atmospheres. MHD spectroscopy quantifies all linear (standing or traveling) wave modes, including overstable (i.e., growing) or damped modes, for a given configuration that achieves force and thermodynamic balance. Here, we present <jats:monospace>Legolas</jats:monospace>, a novel, open-source numerical code to calculate the full MHD spectrum of one-dimensional equilibria with flow, balancing pressure gradients, Lorentz forces, centrifugal effects, and gravity, and enriched with nonadiabatic aspects like radiative losses, thermal conduction, and resistivity. The governing equations use Fourier representations in the ignorable coordinates, and the set of linearized equations is discretized using finite elements in the important height or radial variation, handling Cartesian and cylindrical geometries using the same implementation. A weak Galerkin formulation results in a generalized (non-Hermitian) matrix eigenvalue problem, and linear algebraic algorithms calculate all eigenvalues and corresponding eigenvectors. We showcase a plethora of well-established results, ranging from <jats:italic>p</jats:italic> and <jats:italic>g</jats:italic> modes in magnetized, stratified atmospheres, over modes relevant for coronal loop seismology, thermal instabilities, and discrete overstable Alfvén modes related to solar prominences, to stability studies for astrophysical jet flows. We encounter (quasi-)Parker, (quasi-)interchange, current-driven, and Kelvin–Helmholtz instabilities, as well as nonideal quasi-modes, resistive tearing modes, up to magnetothermal instabilities. The use of high resolution sheds new light on previously calculated spectra, revealing interesting spectral regions that have yet to be investigated.</jats:p>
Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.
Pp. 25