Catálogo de publicaciones - revistas

Compartir en
redes sociales


Título de Acceso Abierto

The Astrophysical Journal Supplement (ApJS)

Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal Supplement is an open access journal publishing significant articles containing extensive data or calculations. ApJS also supports Special Issues, collections of thematically related papers published simultaneously in a single volume.
Palabras clave – provistas por la editorial

astronomy; astrophysics

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde dic. 1996 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

0067-0049

ISSN electrónico

1538-4365

Editor responsable

American Astronomical Society (AAS)

Idiomas de la publicación

  • inglés

País de edición

Reino Unido

Información sobre licencias CC

https://creativecommons.org/licenses/by/4.0/

Cobertura temática

Tabla de contenidos

The Sloan Digital Sky Survey Reverberation Mapping Project: the XMM-Newton X-Ray Source Catalog and Multiband Counterparts

Teng LiuORCID; Andrea Merloni; Torben Simm; Paul J. GreenORCID; William N. BrandtORCID; Donald P. SchneiderORCID; Tom Dwelly; Mara SalvatoORCID; Johannes BuchnerORCID; Yue ShenORCID; Kirpal NandraORCID; Antonis Georgakakis; Luis C. HoORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 32

Yonsei Evolutionary Population Synthesis (YEPS) Model. III. Surface Brightness Fluctuation of Normal and Helium-enhanced Simple Stellar Populations

Chul ChungORCID; Suk-Jin YoonORCID; Hyejeon ChoORCID; Sang-Yoon LeeORCID; Young-Wook LeeORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 33

Physics of Eclipsing Binaries. V. General Framework for Solving the Inverse Problem

Kyle E. ConroyORCID; Angela KochoskaORCID; Daniel HeyORCID; Herbert PabloORCID; Kelly M. HambletonORCID; David JonesORCID; Joseph GiammarcoORCID; Michael Abdul-MasihORCID; Andrej PršaORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 34

Sub-ion Scale Compressive Turbulence in the Solar Wind: MMS Spacecraft Potential Observations

Owen Wyn RobertsORCID; Rumi NakamuraORCID; Klaus TorkarORCID; Yasuhito Narita; Justin C. HolmesORCID; Zoltán VörösORCID; Christoph LhotkaORCID; C. Philippe EscoubetORCID; Daniel B. GrahamORCID; Daniel J. GershmanORCID; Yuri KhotyaintsevORCID; Per-Arne LindqvistORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 35

A Broadband Digital Spectrometer for the Deep Space Network

Kristen VirklerORCID; Jonathon KoczORCID; Melissa SorianoORCID; Shinji HoriuchiORCID; Jorge L. PinedaORCID; Tyrone McNicholsORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 1

The Chandra Deep Wide-field Survey: A New Chandra Legacy Survey in the Boötes Field. I. X-Ray Point Source Catalog, Number Counts, and Multiwavelength Counterparts

Alberto MasiniORCID; Ryan C. HickoxORCID; Christopher M. CarrollORCID; James AirdORCID; David M. AlexanderORCID; Roberto J. AssefORCID; Richard BowerORCID; Mark BrodwinORCID; Michael J. I. BrownORCID; Suchetana ChatterjeeORCID; Chien-Ting J. ChenORCID; Arjun DeyORCID; Michael A. DiPompeoORCID; Kenneth J. DuncanORCID; Peter R. M. Eisenhardt; William R. FormanORCID; Anthony H. GonzalezORCID; Andrew D. GouldingORCID; Kevin N. HainlineORCID; Buell T. JannuziORCID; Christine Jones; Christopher S. KochanekORCID; Ralph KraftORCID; Kyoung-Soo LeeORCID; Eric D. MillerORCID; James MullaneyORCID; Adam D. Myers; Andrew PtakORCID; Adam Stanford; Daniel SternORCID; Alexey VikhlininORCID; David A. WakeORCID; Stephen S. Murray

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 2

The Pan-STARRS Data-processing System

Eugene A. MagnierORCID; K. C. ChambersORCID; H. A. FlewellingORCID; J. C. Hoblitt; M. E. HuberORCID; P. A. Price; W. E. Sweeney; C. Z. WatersORCID; L. DenneauORCID; P. W. DraperORCID; K. W. HodappORCID; R. JedickeORCID; N. KaiserORCID; R.-P. Kudritzki; N. MetcalfeORCID; C. W. StubbsORCID; R. J. WainscoatORCID

<jats:title>Abstract</jats:title> <jats:p>The Pan-STARRS data-processing system is responsible for the steps needed to downloaded, archive, and process all images obtained by the Pan-STARRS telescopes, including real-time detection of transient sources such as supernovae and moving objects including potentially hazardous asteroids. With a nightly data volume of up to 4 TB and an archive of over 4 PB of raw imagery, Pan-STARRS is solidly in the realm of Big Data astronomy. The full data-processing system consists of several subsystems covering the wide range of necessary capabilities. This article describes the Image Processing Pipeline and its connections to both the summit data systems and the outward-facing systems downstream. The latter include the Moving Object Processing System (MOPS) and the public database: the Published Science Products Subsystem.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 3

Pan-STARRS Pixel Processing: Detrending, Warping, Stacking

C. Z. WatersORCID; E. A. MagnierORCID; P. A. Price; K. C. ChambersORCID; W. S. BurgettORCID; P. W. DraperORCID; H. A. FlewellingORCID; K. W. HodappORCID; M. E. HuberORCID; R. JedickeORCID; N. KaiserORCID; R.-P. Kudritzki; R. H. LuptonORCID; N. MetcalfeORCID; A. Rest; W. E. Sweeney; J. L. TonryORCID; R. J. WainscoatORCID; W. M. Wood-VaseyORCID

<jats:title>Abstract</jats:title> <jats:p>The Pan-STARRS1 (PS1) Science Consortium has carried out a set of imaging surveys using the 1.4 gigapixel GPC1 camera on the PS1 telescope. As this camera is composed of many individual electronic readouts and covers a very large field of view, great care was taken to ensure that the many instrumental effects were corrected to produce the most uniform detector response possible. We present the image-detrending steps used as part of the processing of the data contained within the public release of Pan-STARRS1 Data Release 1 (DR1). In addition to the single image processing, the methods used to transform the 375,573 individual exposures into a common sky-oriented grid are discussed, as well as those used to produce both the image stack and difference combination products.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 4

Pan-STARRS Pixel Analysis: Source Detection and Characterization

Eugene A. MagnierORCID; W. E. Sweeney; K. C. ChambersORCID; H. A. FlewellingORCID; M. E. HuberORCID; P. A. Price; C. Z. WatersORCID; L. Denneau; P. W. DraperORCID; D. Farrow; R. JedickeORCID; K. W. HodappORCID; N. Kaiser; R.-P. Kudritzki; N. MetcalfeORCID; C. W. StubbsORCID; R. J. WainscoatORCID

<jats:title>Abstract</jats:title> <jats:p>Over 3 billion astronomical sources have been detected in the more than 22 million orthogonal transfer CCD images obtained as part of the Pan-STARRS1 3<jats:italic>π</jats:italic> survey. Over 85 billion instances of those sources have been automatically detected and characterized by the Pan-STARRS Image Processing Pipeline photometry software, <jats:monospace>psphot</jats:monospace>. This fast, automatic, and reliable software was developed for the Pan-STARRS project but is easily adaptable to images from other telescopes. We describe the analysis of the astronomical sources by <jats:monospace>psphot</jats:monospace> in general as well as for the specific case of the third processing version used for the first two public releases of the Pan-STARRS 3<jats:italic>π</jats:italic> Survey data.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 5

Pan-STARRS Photometric and Astrometric Calibration

Eugene. A. MagnierORCID; Edward. F. SchlaflyORCID; Douglas P. FinkbeinerORCID; J. L. TonryORCID; B. Goldman; S. Röser; E. Schilbach; S. Casertano; K. C. ChambersORCID; H. A. FlewellingORCID; M. E. HuberORCID; P. A. Price; W. E. Sweeney; C. Z. WatersORCID; L. Denneau; P. W. DraperORCID; K. W. HodappORCID; R. JedickeORCID; N. Kaiser; R.-P. Kudritzki; N. MetcalfeORCID; C. W. StubbsORCID; R. J. WainscoatORCID

<jats:title>Abstract</jats:title> <jats:p>We present the details of the photometric and astrometric calibration of the Pan-STARRS1 3<jats:italic>π</jats:italic> Survey. The photometric goals were to reduce the systematic effects introduced by the camera and detectors, and to place all of the observations onto a photometric system with consistent zero-points over the entire area surveyed, the ≈30,000 deg<jats:sup>2</jats:sup> north of <jats:italic>δ</jats:italic> = −30°. Using external comparisons, we demonstrate that the resulting photometric system is consistent across the sky to between 7 and 12.4 mmag depending on the filter. For bright stars, the systematic error floor for individual measurements is (<jats:italic>σ</jats:italic> <jats:sub> <jats:italic>g</jats:italic> </jats:sub>, <jats:italic>σ</jats:italic> <jats:sub> <jats:italic>r</jats:italic> </jats:sub>, <jats:italic>σ</jats:italic> <jats:sub> <jats:italic>i</jats:italic> </jats:sub>, <jats:italic>σ</jats:italic> <jats:sub> <jats:italic>z</jats:italic> </jats:sub>, <jats:italic>σ</jats:italic> <jats:sub> <jats:italic>y</jats:italic> </jats:sub>) = (14, 14, 15, 15, 18) mmag. The astrometric calibration compensates for similar systematic effects so that positions, proper motions, and parallaxes are reliable as well. The bright-star systematic error floor for individual astrometric measurements is 16 mas. The Pan-STARRS Data Release 2 (DR2) astrometric system is tied to the Gaia DR1 coordinate frame with a systematic uncertainty of ∼5 mas.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 6