Catálogo de publicaciones - revistas

Compartir en
redes sociales


Título de Acceso Abierto

The Astrophysical Journal Supplement (ApJS)

Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal Supplement is an open access journal publishing significant articles containing extensive data or calculations. ApJS also supports Special Issues, collections of thematically related papers published simultaneously in a single volume.
Palabras clave – provistas por la editorial

astronomy; astrophysics

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde dic. 1996 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

0067-0049

ISSN electrónico

1538-4365

Editor responsable

American Astronomical Society (AAS)

Idiomas de la publicación

  • inglés

País de edición

Reino Unido

Información sobre licencias CC

https://creativecommons.org/licenses/by/4.0/

Cobertura temática

Tabla de contenidos

Modeling the Early Evolution of a Slow Coronal Mass Ejection Imaged by the Parker Solar Probe

Alexis P. RouillardORCID; Nicolas PoirierORCID; Michael Lavarra; Anthony Bourdelle; Kévin DalmasseORCID; Athanasios Kouloumvakos; Angelos VourlidasORCID; Valbona Kunkel; Phillip Hess; Russ A. HowardORCID; Guillermo StenborgORCID; Nour E. Raouafi

<jats:title>Abstract</jats:title> <jats:p>During its first solar encounter, the <jats:italic>Parker Solar Probe</jats:italic> (<jats:italic>PSP</jats:italic>) acquired unprecedented up-close imaging of a small coronal mass ejection (CME) propagating in the forming slow solar wind. The CME originated as a cavity imaged in extreme ultraviolet that moved very slowly (&lt;50 km s<jats:sup>−1</jats:sup>) to 3–5 solar radii (<jats:italic>R</jats:italic> <jats:sub>⊙</jats:sub>), where it then accelerated to supersonic speeds. We present a new model of an erupting flux rope (FR) that computes the forces acting on its expansion with a computation of its internal magnetic field in three dimensions. The latter is accomplished by solving the Grad–Shafranov equation inside two-dimensional cross sections of the FR. We use this model to interpret the kinematic evolution and morphology of the CME imaged by <jats:italic>PSP</jats:italic>. We investigate the relative role of toroidal forces, momentum coupling, and buoyancy for different assumptions on the initial properties of the CME. The best agreement between the dynamic evolution of the observed and simulated FR is obtained by modeling the two-phase eruption process as the result of two episodes of poloidal flux injection. Each episode, possibly induced by magnetic reconnection, boosted the toroidal forces accelerating the FR out of the corona. We also find that the drag induced by the accelerating solar wind could account for about half of the acceleration experienced by the FR. We use the model to interpret the presence of a small dark cavity, clearly imaged by <jats:italic>PSP</jats:italic> deep inside the CME, as a low-density region dominated by its strong axial magnetic fields.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 72

Operational Modeling of Heliospheric Space Weather for the Parker Solar Probe

Dusan OdstrcilORCID; M. Leila MaysORCID; Phillip Hess; Shaela I. JonesORCID; Carl J. HenneyORCID; Charles N. Arge

<jats:title>Abstract</jats:title> <jats:p>The interpretation of multi-spacecraft heliospheric observations and three-dimensional reconstruction of the structured and evolving solar wind with propagating and interacting coronal mass ejections (CMEs) is a challenging task. Numerical simulations can provide global context and suggest what may and may not be observed. The Community Coordinated Modeling Center (CCMC) provides both mission science and space weather support to all heliospheric missions. Currently, this is realized by real-time simulations of the corotating and transient disturbances by the WSA-ENLIL-Cone model. We have simulated the heliospheric space weather relevant to the <jats:italic>Parker Solar Probe</jats:italic> (<jats:italic>PSP</jats:italic>) mission since 2018 September and provided numerical results to our colleagues analyzing in situ measurements published in the ApJS Special Issue. In this paper, we do not analyze <jats:italic>PSP</jats:italic> data, but we present recent updates in simulating the background solar wind and compare them with an existing operational model around the first <jats:italic>PSP</jats:italic> Perihelion, from 2018 October to 2018 December. We introduce new tools that assist in the interpretation of remote observations and in situ measurements useful for <jats:italic>PSP</jats:italic> and other missions, and for predicting heliospheric space weather. We also use this opportunity to evaluate recent improvements in the WSA and ADAPT-WSA coronal models that are being transitioned and considered to be transitioned, respectively, to operations. Finally, we simulate CME-like hydrodynamic ejecta with various parameters and calculated synthetic white-light images that can be used for “mid-course” correction of operational predictions.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 73

The Solar Probe ANalyzers—Electrons on the Parker Solar Probe

Phyllis L. WhittleseyORCID; Davin E. LarsonORCID; Justin C. KasperORCID; Jasper HalekasORCID; Mamuda Abatcha; Robert Abiad; M. BerthomierORCID; A. W. CaseORCID; Jianxin Chen; David W. Curtis; Gregory Dalton; Kristopher G. KleinORCID; Kelly E. KorreckORCID; Roberto LiviORCID; Michael Ludlam; Mario Marckwordt; Ali Rahmati; Miles Robinson; Amanda Slagle; M. L. StevensORCID; Chris Tiu; J. L. VernieroORCID

<jats:title>Abstract</jats:title> <jats:p>Electrostatic analyzers of different designs have been used since the earliest days of the space age, beginning with the very earliest solar-wind measurements made by Mariner 2 en route to Venus in 1962. The <jats:italic>Parker Solar Probe</jats:italic> (<jats:italic>PSP</jats:italic>) mission, NASA’s first dedicated mission to study the innermost reaches of the heliosphere, makes its thermal plasma measurements using a suite of instruments called the Solar Wind Electrons, Alphas, and Protons (SWEAP) investigation. SWEAP’s electron <jats:italic>PSP</jats:italic> Analyzer (Solar Probe ANalyzer-Electron (SPAN-E)) instruments are a pair of top-hat electrostatic analyzers on <jats:italic>PSP</jats:italic> that are capable of measuring the electron distribution function in the solar wind from 2 eV to 30 keV. For the first time, in situ measurements of thermal electrons provided by SPAN-E will help reveal the heating and acceleration mechanisms driving the evolution of the solar wind at the points of acceleration and heating, closer than ever before to the Sun. This paper details the design of the SPAN-E sensors and their operation, data formats, and measurement caveats from <jats:italic>PSP</jats:italic>’s first two close encounters with the Sun.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 74

Introduction

Marcia Neugebauer

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 19

Energetic Particle Increases Associated with Stream Interaction Regions

C. M. S. Cohen; E. R. ChristianORCID; A. C. CummingsORCID; A. J. Davis; M. I. DesaiORCID; J. Giacalone; M. E. HillORCID; C. J. JoyceORCID; A. W. Labrador; R. A. LeskeORCID; W. H. MatthaeusORCID; D. J. McComasORCID; R. L. McNutt; R. A. Mewaldt; D. G. MitchellORCID; J. S. RankinORCID; E. C. Roelof; N. A. SchwadronORCID; E. C. Stone; J. R. SzalayORCID; M. E. Wiedenbeck; R. C. AllenORCID; G. C. Ho; L. K. JianORCID; D. LarioORCID; D. Odstrcil; S. D. BaleORCID; S. T. BadmanORCID; M. PulupaORCID; R. J. MacDowallORCID; J. C. KasperORCID; A. W. CaseORCID; K. E. KorreckORCID; D. E. Larson; Roberto Livi; M. L. StevensORCID; Phyllis Whittlesey

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 20

Plasma Waves near the Electron Cyclotron Frequency in the Near-Sun Solar Wind

David M. MalaspinaORCID; Jasper HalekasORCID; Laura BerčičORCID; Davin Larson; Phyllis WhittleseyORCID; Stuart D. BaleORCID; John W. BonnellORCID; Thierry Dudok de WitORCID; Robert E. ErgunORCID; Gregory HowesORCID; Keith GoetzORCID; Katherine GoodrichORCID; Peter R. HarveyORCID; Robert J. MacDowallORCID; Marc PulupaORCID; Anthony W. CaseORCID; Justin C. KasperORCID; Kelly E. KorreckORCID; Roberto LiviORCID; Michael L. StevensORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 21

Electrons in the Young Solar Wind: First Results from the Parker Solar Probe

J. S. HalekasORCID; P. Whittlesey; D. E. Larson; D. McGinnis; M. MaksimovicORCID; M. Berthomier; J. C. KasperORCID; A. W. CaseORCID; K. E. KorreckORCID; M. L. StevensORCID; K. G. KleinORCID; S. D. BaleORCID; R. J. MacDowallORCID; M. P. PulupaORCID; D. M. MalaspinaORCID; K. Goetz; P. R. Harvey

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 22

WISPR Imaging of a Pristine CME

Phillip HessORCID; Alexis P. Rouillard; Athanasios Kouloumvakos; Paulett C. Liewer; Jie ZhangORCID; Suman DhakalORCID; Guillermo StenborgORCID; Robin C. ColaninnoORCID; Russell A. HowardORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 25

Identification of Magnetic Flux Ropes from Parker Solar Probe Observations during the First Encounter

L.-L. ZhaoORCID; G. P. ZankORCID; L. AdhikariORCID; Q. HuORCID; J. C. KasperORCID; S. D. BaleORCID; K. E. KorreckORCID; A. W. CaseORCID; M. StevensORCID; J. W. Bonnell; T. Dudok de WitORCID; K. Goetz; P. R. Harvey; R. J. MacDowallORCID; D. M. MalaspinaORCID; M. PulupaORCID; D. E. Larson; R. Livi; P. Whittlesey; K. G. KleinORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 26

The Near-Sun Dust Environment: Initial Observations from Parker Solar Probe

J. R. SzalayORCID; P. PokornýORCID; S. D. BaleORCID; E. R. ChristianORCID; K. Goetz; K. Goodrich; M. E. HillORCID; M. KuchnerORCID; R. Larsen; D. MalaspinaORCID; D. J. McComasORCID; D. MitchellORCID; B. Page; N. SchwadronORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 27