Catálogo de publicaciones - revistas

Compartir en
redes sociales


Título de Acceso Abierto

The Astrophysical Journal Supplement (ApJS)

Resumen/Descripción – provisto por la editorial en inglés
The Astrophysical Journal Supplement is an open access journal publishing significant articles containing extensive data or calculations. ApJS also supports Special Issues, collections of thematically related papers published simultaneously in a single volume.
Palabras clave – provistas por la editorial

astronomy; astrophysics

Disponibilidad
Institución detectada Período Navegá Descargá Solicitá
No detectada desde dic. 1996 / hasta dic. 2023 IOPScience

Información

Tipo de recurso:

revistas

ISSN impreso

0067-0049

ISSN electrónico

1538-4365

Editor responsable

American Astronomical Society (AAS)

Idiomas de la publicación

  • inglés

País de edición

Reino Unido

Información sobre licencias CC

https://creativecommons.org/licenses/by/4.0/

Cobertura temática

Tabla de contenidos

Reconstructing Functions and Estimating Parameters with Artificial Neural Networks: A Test with a Hubble Parameter and SNe Ia

Guo-Jian WangORCID; Xiao-Jiao Ma; Si-Yao Li; Jun-Qing Xia

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 13

Line Lists for the ${{\rm{X}}}^{1}{{\rm{\Sigma }}}^{+}$ State of CS

Shilin HouORCID; Zhengxing Wei

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 14

A Catalog of Periodic Variables in Open Clusters M35 and NGC 2158

M. Soares-FurtadoORCID; J. D. HartmanORCID; W. BhattiORCID; L. G. BoumaORCID; T. BarnaORCID; G. Á. BakosORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 15

Quasar Accretion Disk Sizes from Continuum Reverberation Mapping in the DES Standard-star Fields

Zhefu YuORCID; Paul MartiniORCID; T. M. DavisORCID; R. A. GruendlORCID; J. K. Hoormann; C. S. KochanekORCID; C. LidmanORCID; D. MuddORCID; B. M. PetersonORCID; W. Wester; S. AllamORCID; J. AnnisORCID; J. Asorey; S. Avila; M. Banerji; E. Bertin; D. BrooksORCID; E. Buckley-GeerORCID; J. Calcino; A. Carnero RosellORCID; D. Carollo; M. Carrasco KindORCID; J. CarreteroORCID; C. E. Cunha; C. B. D’AndreaORCID; L. N. da Costa; J. De VicenteORCID; S. DesaiORCID; H. T. DiehlORCID; P. Doel; T. F. EiflerORCID; B. Flaugher; P. Fosalba; J. FriemanORCID; J. García-BellidoORCID; E. Gaztanaga; K. GlazebrookORCID; D. GruenORCID; J. Gschwend; G. GutierrezORCID; W. G. Hartley; S. R. HintonORCID; D. L. HollowoodORCID; K. Honscheid; B. HoyleORCID; D. J. James; A. G. Kim; E. Krause; K. KuehnORCID; N. KuropatkinORCID; G. F. LewisORCID; M. Lima; E. Macaulay; M. A. G. Maia; J. L. MarshallORCID; F. MenanteauORCID; R. MiquelORCID; A. Möller; A. A. PlazasORCID; A. K. RomerORCID; E. SanchezORCID; V. Scarpine; M. Schubnell; S. Serrano; M. SmithORCID; R. C. Smith; M. Soares-SantosORCID; F. SobreiraORCID; E. SuchytaORCID; E. Swann; M. E. C. Swanson; G. TarleORCID; B. E. TuckerORCID; D. L. TuckerORCID; V. Vikram

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 16

On Fabry–Pérot Etalon-based Instruments. III. Instrument Applications

F. J. BailénORCID; D. Orozco SuárezORCID; J. C. del Toro IniestaORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 17

Erratum: “Laboratory Measurements of Infrared Absorption Spectra of Hydrogen-ordered Ice: A Step to the Exploration of Ice XI in Space” (2009, ApJS, 184, 361)

Masashi Arakawa; Hiroyuki Kagi

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 18

Compact Groups of Galaxies in Sloan Digital Sky Survey and LAMOST Spectral Survey. I. The Catalogs

Yun-Liang Zheng; Shi-Yin ShenORCID

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 12

Magnetic Connectivity of the Ecliptic Plane within 0.5 au: Potential Field Source Surface Modeling of the First Parker Solar Probe Encounter

Samuel T. BadmanORCID; Stuart D. BaleORCID; Juan C. Martínez OliverosORCID; Olga PanasencoORCID; Marco VelliORCID; David StansbyORCID; Juan C. Buitrago-CasasORCID; Victor RévilleORCID; John W. BonnellORCID; Anthony W. CaseORCID; Thierry Dudok de WitORCID; Keith GoetzORCID; Peter R. HarveyORCID; Justin C. KasperORCID; Kelly E. KorreckORCID; Davin E. LarsonORCID; Roberto LiviORCID; Robert J. MacDowallORCID; David M. MalaspinaORCID; Marc PulupaORCID; Michael L. StevensORCID; Phyllis L. WhittleseyORCID

<jats:title>Abstract</jats:title> <jats:p>We compare magnetic field measurements taken by the FIELDS instrument on board <jats:italic>Parker Solar Probe</jats:italic> (<jats:italic>PSP</jats:italic>) during its first solar encounter to predictions obtained by potential field source surface (PFSS) modeling. Ballistic propagation is used to connect the spacecraft to the source surface. Despite the simplicity of the model, our results show striking agreement with <jats:italic>PSP</jats:italic>’s first observations of the heliospheric magnetic field from ∼0.5 au (107.5 <jats:italic>R</jats:italic> <jats:sub>⊙</jats:sub>) down to 0.16 au (35.7 <jats:italic>R</jats:italic> <jats:sub>⊙</jats:sub>). Further, we show the robustness of the agreement is improved both by allowing the photospheric input to the model to vary in time, and by advecting the field from <jats:italic>PSP</jats:italic> down to the PFSS model domain using in situ <jats:italic>PSP</jats:italic>/Solar Wind Electrons Alphas and Protons measurements of the solar wind speed instead of assuming it to be constant with longitude and latitude. We also explore the source surface height parameter (<jats:italic>R</jats:italic> <jats:sub>SS</jats:sub>) to the PFSS model, finding that an extraordinarily low source surface height (1.3–1.5 <jats:italic>R</jats:italic> <jats:sub>⊙</jats:sub>) predicts observed small-scale polarity inversions, which are otherwise washed out with regular modeling parameters. Finally, we extract field line traces from these models. By overlaying these on extreme ultraviolet images we observe magnetic connectivity to various equatorial and mid-latitude coronal holes, indicating plausible magnetic footpoints and offering context for future discussions of sources of the solar wind measured by <jats:italic>PSP</jats:italic>.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 23

The Role of Alfvén Wave Dynamics on the Large-scale Properties of the Solar Wind: Comparing an MHD Simulation with Parker Solar Probe E1 Data

Victor RévilleORCID; Marco VelliORCID; Olga PanasencoORCID; Anna TeneraniORCID; Chen ShiORCID; Samuel T. BadmanORCID; Stuart D. BaleORCID; J. C. KasperORCID; Michael L. StevensORCID; Kelly E. KorreckORCID; J. W. BonnellORCID; Anthony W. CaseORCID; Thierry Dudok de WitORCID; Keith GoetzORCID; Peter R. HarveyORCID; Davin E. LarsonORCID; Roberto LiviORCID; David M. MalaspinaORCID; Robert J. MacDowallORCID; Marc PulupaORCID; Phyllis L. WhittleseyORCID

<jats:title>Abstract</jats:title> <jats:p>During <jats:italic>Parker Solar Probe</jats:italic>’s first orbit, the solar wind plasma was observed in situ closer than ever before, the perihelion on 2018 November 6 revealing a flow that is constantly permeated by large-amplitude Alfvénic fluctuations. These include radial magnetic field reversals, or switchbacks, that seem to be a persistent feature of the young solar wind. The measurements also reveal a very strong, unexpected, azimuthal velocity component. In this work, we numerically model the solar corona during this first encounter, solving the MHD equations and accounting for Alfvén wave transport and dissipation. We find that the large-scale plasma parameters are well reproduced, allowing the computation of the solar wind sources at <jats:italic>Probe</jats:italic> with confidence. We try to understand the dynamical nature of the solar wind to explain both the amplitude of the observed radial magnetic field and of the azimuthal velocities.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 24

Solar Wind Streams and Stream Interaction Regions Observed by the Parker Solar Probe with Corresponding Observations at 1 au

R. C. AllenORCID; D. LarioORCID; D. Odstrcil; G. C. HoORCID; L. K. JianORCID; C. M. S. Cohen; S. T. BadmanORCID; S. I. JonesORCID; C. N. Arge; M. L. Mays; G. M. MasonORCID; S. D. BaleORCID; J. W. BonnellORCID; A. W. CaseORCID; E. R. ChristianORCID; T. Dudok de WitORCID; K. GoetzORCID; P. R. HarveyORCID; C. J. HenneyORCID; M. E. HillORCID; J. C. KasperORCID; K. E. KorreckORCID; D. LarsonORCID; R. LiviORCID; R. J. MacDowallORCID; D. M. MalaspinaORCID; D. J. McComasORCID; R. McNuttORCID; D. G. MitchellORCID; M. PulupaORCID; N. RaouafiORCID; N. SchwadronORCID; M. L. StevensORCID; P. L. WhittleseyORCID; M. WiedenbeckORCID

<jats:title>Abstract</jats:title> <jats:p>Several fast solar wind streams and stream interaction regions (SIRs) were observed by the <jats:italic>Parker Solar Probe</jats:italic> (<jats:italic>PSP</jats:italic>) during its first orbit (2018 September–2019 January). During this time, several recurring SIRs were also seen at 1 au at both L1 (<jats:italic>Advanced Composition Explorer</jats:italic> (<jats:italic>ACE</jats:italic>) and <jats:italic>Wind</jats:italic>) and the location of the <jats:italic>Solar Terrestrial Relations Observatory-Ahead</jats:italic> (<jats:italic>STEREO-A</jats:italic>). In this paper, we compare four fast streams observed by <jats:italic>PSP</jats:italic> at different radial distances during its first orbit. For three of these fast stream events, measurements from L1 (<jats:italic>ACE</jats:italic> and <jats:italic>Wind</jats:italic>) and <jats:italic>STEREO-A</jats:italic> indicated that the fast streams were observed by both <jats:italic>PSP</jats:italic> and at least one of the 1 au monitors. Our associations are supported by simulations made by the ENLIL model driven by GONG-(ADAPT-)WSA, which allows us to contextualize the inner heliospheric conditions during the first orbit of <jats:italic>PSP</jats:italic>. Additionally, we determine which of these fast streams are associated with an SIR and characterize the SIR properties for these events. From these comparisons, we find that the compression region associated with the fast-speed streams overtaking the preceding solar wind can form at various radial distances from the Sun in the inner heliosphere inside 0.5 au, with the suprathermal ion population (energies between 30 and 586 keV) observed as isolated enhancements suggesting localized acceleration near the SIR stream interface at ∼0.3 au, which is unlike those seen at 1 au, where the suprathermal enhancements extend throughout and behind the SIR. This suprathermal enhancement extends further into the fast stream with increasing distance from the Sun.</jats:p>

Palabras clave: Space and Planetary Science; Astronomy and Astrophysics.

Pp. 36