Catálogo de publicaciones - libros
Alternative Breast Imaging: Four Model-Based Approaches
Keith D. Paulsen Paul M. Meaney Larry C. Gilman
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-0-387-23363-5
ISBN electrónico
978-0-387-23364-2
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer Science + Business Media, Inc. 2005
Cobertura temática
Tabla de contenidos
Four Alternative Breast Imaging Modalities
Steven Poplack; Wendy Wells; Keith Paulsen
The monitoring of grid environments helps administrators and users keep track of the availability and loading of resources, and the management of resources is dependent on the monitoring of information data. There is not an efficient and consistent monitoring mechanism to the manipulation of devices, resources and services in Grid computing. We propose a novel monitoring framework used to gather and retrieve monitoring information of Grid environments. The monitoring system RMCS integrates and extends the existing monitoring system using service-oriented mechanism and the common information model CIM. The RMCS defines a hierarchical structure of monitoring resources, and customizes the monitoring parameters and the display way. The adoption of CIM-based monitoring service enables compatible with other grid services such as grid portal, transaction or resource management and charging. The investigation shows that this monitoring approach provides the scalable monitoring capabilities, enables to exchange information in an unrestricted and flexible way, and improves grid performance and utilization.
Pp. 1-24
Computational Framework
Paul M. Meaney; Keith Paulsen
The monitoring of grid environments helps administrators and users keep track of the availability and loading of resources, and the management of resources is dependent on the monitoring of information data. There is not an efficient and consistent monitoring mechanism to the manipulation of devices, resources and services in Grid computing. We propose a novel monitoring framework used to gather and retrieve monitoring information of Grid environments. The monitoring system RMCS integrates and extends the existing monitoring system using service-oriented mechanism and the common information model CIM. The RMCS defines a hierarchical structure of monitoring resources, and customizes the monitoring parameters and the display way. The adoption of CIM-based monitoring service enables compatible with other grid services such as grid portal, transaction or resource management and charging. The investigation shows that this monitoring approach provides the scalable monitoring capabilities, enables to exchange information in an unrestricted and flexible way, and improves grid performance and utilization.
Pp. 25-47
Magnetic Resonance Elastography: Theory
Elijah E. W. Van Houten; Marvin Doyley
The monitoring of grid environments helps administrators and users keep track of the availability and loading of resources, and the management of resources is dependent on the monitoring of information data. There is not an efficient and consistent monitoring mechanism to the manipulation of devices, resources and services in Grid computing. We propose a novel monitoring framework used to gather and retrieve monitoring information of Grid environments. The monitoring system RMCS integrates and extends the existing monitoring system using service-oriented mechanism and the common information model CIM. The RMCS defines a hierarchical structure of monitoring resources, and customizes the monitoring parameters and the display way. The adoption of CIM-based monitoring service enables compatible with other grid services such as grid portal, transaction or resource management and charging. The investigation shows that this monitoring approach provides the scalable monitoring capabilities, enables to exchange information in an unrestricted and flexible way, and improves grid performance and utilization.
Pp. 49-67
Magnetic Resonance Elastrography: Experimental Validation and Performance Optimazation
Marvin Doyley; John Weaver
The monitoring of grid environments helps administrators and users keep track of the availability and loading of resources, and the management of resources is dependent on the monitoring of information data. There is not an efficient and consistent monitoring mechanism to the manipulation of devices, resources and services in Grid computing. We propose a novel monitoring framework used to gather and retrieve monitoring information of Grid environments. The monitoring system RMCS integrates and extends the existing monitoring system using service-oriented mechanism and the common information model CIM. The RMCS defines a hierarchical structure of monitoring resources, and customizes the monitoring parameters and the display way. The adoption of CIM-based monitoring service enables compatible with other grid services such as grid portal, transaction or resource management and charging. The investigation shows that this monitoring approach provides the scalable monitoring capabilities, enables to exchange information in an unrestricted and flexible way, and improves grid performance and utilization.
Pp. 69-83
Electrical Impedance Spectroscopy: Theory
Hamid Dehghani; Nirmal K. Soni
The monitoring of grid environments helps administrators and users keep track of the availability and loading of resources, and the management of resources is dependent on the monitoring of information data. There is not an efficient and consistent monitoring mechanism to the manipulation of devices, resources and services in Grid computing. We propose a novel monitoring framework used to gather and retrieve monitoring information of Grid environments. The monitoring system RMCS integrates and extends the existing monitoring system using service-oriented mechanism and the common information model CIM. The RMCS defines a hierarchical structure of monitoring resources, and customizes the monitoring parameters and the display way. The adoption of CIM-based monitoring service enables compatible with other grid services such as grid portal, transaction or resource management and charging. The investigation shows that this monitoring approach provides the scalable monitoring capabilities, enables to exchange information in an unrestricted and flexible way, and improves grid performance and utilization.
Pp. 85-105
Electrical Impedance Spectroscopy: Translation to Clinic
Alex Hartov; Ryan J. Halter; Todd E. Kerner
The monitoring of grid environments helps administrators and users keep track of the availability and loading of resources, and the management of resources is dependent on the monitoring of information data. There is not an efficient and consistent monitoring mechanism to the manipulation of devices, resources and services in Grid computing. We propose a novel monitoring framework used to gather and retrieve monitoring information of Grid environments. The monitoring system RMCS integrates and extends the existing monitoring system using service-oriented mechanism and the common information model CIM. The RMCS defines a hierarchical structure of monitoring resources, and customizes the monitoring parameters and the display way. The adoption of CIM-based monitoring service enables compatible with other grid services such as grid portal, transaction or resource management and charging. The investigation shows that this monitoring approach provides the scalable monitoring capabilities, enables to exchange information in an unrestricted and flexible way, and improves grid performance and utilization.
Pp. 107-126
Microwave Imaging: A Model-Based Approach
Paul M. Meaney; Qianqian Fang
The monitoring of grid environments helps administrators and users keep track of the availability and loading of resources, and the management of resources is dependent on the monitoring of information data. There is not an efficient and consistent monitoring mechanism to the manipulation of devices, resources and services in Grid computing. We propose a novel monitoring framework used to gather and retrieve monitoring information of Grid environments. The monitoring system RMCS integrates and extends the existing monitoring system using service-oriented mechanism and the common information model CIM. The RMCS defines a hierarchical structure of monitoring resources, and customizes the monitoring parameters and the display way. The adoption of CIM-based monitoring service enables compatible with other grid services such as grid portal, transaction or resource management and charging. The investigation shows that this monitoring approach provides the scalable monitoring capabilities, enables to exchange information in an unrestricted and flexible way, and improves grid performance and utilization.
Pp. 127-153
Microwave Imaging: Hardware and Results
Paul M. Meaney; Dun Li
The monitoring of grid environments helps administrators and users keep track of the availability and loading of resources, and the management of resources is dependent on the monitoring of information data. There is not an efficient and consistent monitoring mechanism to the manipulation of devices, resources and services in Grid computing. We propose a novel monitoring framework used to gather and retrieve monitoring information of Grid environments. The monitoring system RMCS integrates and extends the existing monitoring system using service-oriented mechanism and the common information model CIM. The RMCS defines a hierarchical structure of monitoring resources, and customizes the monitoring parameters and the display way. The adoption of CIM-based monitoring service enables compatible with other grid services such as grid portal, transaction or resource management and charging. The investigation shows that this monitoring approach provides the scalable monitoring capabilities, enables to exchange information in an unrestricted and flexible way, and improves grid performance and utilization.
Pp. 155-181
Near Infrared Spectroscopic Imaging: Theory
Hamid Dehghani; Brian Pogue
The monitoring of grid environments helps administrators and users keep track of the availability and loading of resources, and the management of resources is dependent on the monitoring of information data. There is not an efficient and consistent monitoring mechanism to the manipulation of devices, resources and services in Grid computing. We propose a novel monitoring framework used to gather and retrieve monitoring information of Grid environments. The monitoring system RMCS integrates and extends the existing monitoring system using service-oriented mechanism and the common information model CIM. The RMCS defines a hierarchical structure of monitoring resources, and customizes the monitoring parameters and the display way. The adoption of CIM-based monitoring service enables compatible with other grid services such as grid portal, transaction or resource management and charging. The investigation shows that this monitoring approach provides the scalable monitoring capabilities, enables to exchange information in an unrestricted and flexible way, and improves grid performance and utilization.
Pp. 183-199
Near Infrared Spectroscopic Imaging: Translation to Clinic
Brian Pogue; Shudong Jiang; Hamid Dehghani; Keith D. Paulsen
The monitoring of grid environments helps administrators and users keep track of the availability and loading of resources, and the management of resources is dependent on the monitoring of information data. There is not an efficient and consistent monitoring mechanism to the manipulation of devices, resources and services in Grid computing. We propose a novel monitoring framework used to gather and retrieve monitoring information of Grid environments. The monitoring system RMCS integrates and extends the existing monitoring system using service-oriented mechanism and the common information model CIM. The RMCS defines a hierarchical structure of monitoring resources, and customizes the monitoring parameters and the display way. The adoption of CIM-based monitoring service enables compatible with other grid services such as grid portal, transaction or resource management and charging. The investigation shows that this monitoring approach provides the scalable monitoring capabilities, enables to exchange information in an unrestricted and flexible way, and improves grid performance and utilization.
Pp. 201-226