Catálogo de publicaciones - libros
Advances in Targeted Cancer Therapy
Paul L. Herrling ; Alex Matter ; Richard M. Schultz (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Cancer Research; Molecular Medicine
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-7643-7174-6
ISBN electrónico
978-3-7643-7414-3
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Birkhäuser Verlag 2005
Cobertura temática
Tabla de contenidos
Dawn of a new era in molecular cancer therapeutics
Richard M. Schultz
Semiconductor quantum dots are fascinating objects, since, in some respect, they can be regarded as artificial atoms [1]. Figure 5.1 shows a very schematic comparison of a real three–dimensional atom and a disc–shaped quantum dot. The structure of real atoms is three–dimensional, while most of the artificial quantum dots can be regarded as large Q2D atoms, since the lateral dimensions are in most cases much larger than the vertical extension. Of course, a crucial difference between the two systems is the shape of the confining potentials, which, for real atoms is essentially the Coulomb potential of the nucleus, and, for quantum–dot atoms in some approximation a two–dimensional parabolic potential.
Pp. 1-17
Obtacles and opportunities in the clinical development of targeted therapeutics
Grace K. Dy; Alex A. Adjei
Semiconductor quantum dots are fascinating objects, since, in some respect, they can be regarded as artificial atoms [1]. Figure 5.1 shows a very schematic comparison of a real three–dimensional atom and a disc–shaped quantum dot. The structure of real atoms is three–dimensional, while most of the artificial quantum dots can be regarded as large Q2D atoms, since the lateral dimensions are in most cases much larger than the vertical extension. Of course, a crucial difference between the two systems is the shape of the confining potentials, which, for real atoms is essentially the Coulomb potential of the nucleus, and, for quantum–dot atoms in some approximation a two–dimensional parabolic potential.
Pp. 19-41
Tumor models for preclinical development of targeted agents
Beverly A. Teicher
In conclusion, because of the responses observed in phase I, II and III trials with angiogenesis inhibitors in combination with other biological agents or classic chemotherapy, there is no longer doubt that anti-angiogenic agents have become part of anticancer therapy in general. In the coming years, we should further explore the treatment strategies in which anti-angiogenic agents will add to a prolonged survival and an increase in the cure rate of cancer. In our opinion, the contribution of these agents will be tremendous.
Pp. 43-66
Angiogenesis inhibitors: What is the clinical future?
Henk M. W. Verheul; Herbert M. Pinedo
In conclusion, because of the responses observed in phase I, II and III trials with angiogenesis inhibitors in combination with other biological agents or classic chemotherapy, there is no longer doubt that anti-angiogenic agents have become part of anticancer therapy in general. In the coming years, we should further explore the treatment strategies in which anti-angiogenic agents will add to a prolonged survival and an increase in the cure rate of cancer. In our opinion, the contribution of these agents will be tremendous.
Pp. 67-91
Epidermal growth factor receptor (EGFR) inhibitors in cancer therapy
Fortunato Ciardiello; Ferdinando De Vita
Semiconductor quantum dots are fascinating objects, since, in some respect, they can be regarded as artificial atoms [1]. Figure 5.1 shows a very schematic comparison of a real three–dimensional atom and a disc–shaped quantum dot. The structure of real atoms is three–dimensional, while most of the artificial quantum dots can be regarded as large Q2D atoms, since the lateral dimensions are in most cases much larger than the vertical extension. Of course, a crucial difference between the two systems is the shape of the confining potentials, which, for real atoms is essentially the Coulomb potential of the nucleus, and, for quantum–dot atoms in some approximation a two–dimensional parabolic potential.
Pp. 93-115
Cell survival signaling during apoptosis: Implications in drug resistance and anti-cancer therapeutic development
Grace Choy; Jun-Wei Liu; Dhyan Chandra; Dean G. Tang
In conclusion, because of the responses observed in phase I, II and III trials with angiogenesis inhibitors in combination with other biological agents or classic chemotherapy, there is no longer doubt that anti-angiogenic agents have become part of anticancer therapy in general. In the coming years, we should further explore the treatment strategies in which anti-angiogenic agents will add to a prolonged survival and an increase in the cure rate of cancer. In our opinion, the contribution of these agents will be tremendous.
Pp. 115-145
Targeted histone deacetylase inhibition for cancer prevention and therapy
Carlo Palmieri; R. Charles Coombes; David M. Vigushin
In conclusion, because of the responses observed in phase I, II and III trials with angiogenesis inhibitors in combination with other biological agents or classic chemotherapy, there is no longer doubt that anti-angiogenic agents have become part of anticancer therapy in general. In the coming years, we should further explore the treatment strategies in which anti-angiogenic agents will add to a prolonged survival and an increase in the cure rate of cancer. In our opinion, the contribution of these agents will be tremendous.
Pp. 147-191
Inhibitors of cyclin-dependent kinase modulators for cancer therapy
Adrian M. Senderowicz
In conclusion, because of the responses observed in phase I, II and III trials with angiogenesis inhibitors in combination with other biological agents or classic chemotherapy, there is no longer doubt that anti-angiogenic agents have become part of anticancer therapy in general. In the coming years, we should further explore the treatment strategies in which anti-angiogenic agents will add to a prolonged survival and an increase in the cure rate of cancer. In our opinion, the contribution of these agents will be tremendous.
Pp. 183-206
Targeting cyclooxygenase-2 for cancer prevention and treatment
Stephen T. Gately
Semiconductor quantum dots are fascinating objects, since, in some respect, they can be regarded as artificial atoms [1]. Figure 5.1 shows a very schematic comparison of a real three–dimensional atom and a disc–shaped quantum dot. The structure of real atoms is three–dimensional, while most of the artificial quantum dots can be regarded as large Q2D atoms, since the lateral dimensions are in most cases much larger than the vertical extension. Of course, a crucial difference between the two systems is the shape of the confining potentials, which, for real atoms is essentially the Coulomb potential of the nucleus, and, for quantum–dot atoms in some approximation a two–dimensional parabolic potential.
Pp. 207-225
Antisense approaches in drug discovery and development
Elizabeth Rayburn; Wei Wang; Ruiwen Zhang; Hui Wang
In conclusion, because of the responses observed in phase I, II and III trials with angiogenesis inhibitors in combination with other biological agents or classic chemotherapy, there is no longer doubt that anti-angiogenic agents have become part of anticancer therapy in general. In the coming years, we should further explore the treatment strategies in which anti-angiogenic agents will add to a prolonged survival and an increase in the cure rate of cancer. In our opinion, the contribution of these agents will be tremendous.
Pp. 227-274