Catálogo de publicaciones - libros
An Introduction to Global Spectral Modelin
T. N. Krishnamurti V. M. Hardiker H. S. Bedi L. Ramaswamy
Second Revised and Enlarged Edition.
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-0-387-30254-6
ISBN electrónico
978-0-387-32962-8
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Springer Science+Business Media, Inc. 2006
Cobertura temática
Tabla de contenidos
Introduction
T. N. Krishnamurti; V. M. Hardiker; H. S. Bedi; L. Ramaswamy
Understanding the causes and consequences of spatial heterogeneity in ecosystem function represents a frontier in both ecosystem and landscape ecology. Ecology lacks a theory of ecosystem function that is spatially explicit, and there are few empirical studies from which to infer general conclusions. We present an organizing framework that clarifies consideration of ecosystem processes in heterogeneous landscapes; consider when spatial heterogeneity is important; discuss methods for incorporating spatial heterogeneity in ecosystem function; and identify challenges and opportunities for progress. Two general classes of ecosystem processes are distinguished. represent rates measured at a particular location; are assumed to be small relative to the measured response and are ignored. Spatial heterogeneity is important for point processes when (1) the average rate must be determined over an area that is spatially heterogeneous or (2) understanding or predicting the spatial pattern of process rates is an objective, for example, to identify areas of high or low rates, or to quantify the spatial pattern or scale of variability in rates. Lateral transfers are flows of materials, energy, or information from one location to another represented in a two-dimensional space. Spatial heterogeneity may be important for understanding lateral transfers when (1) the pattern of heterogeneity influences net lateral transfer and potentially the behavior of the whole system, (2) the spatial heterogeneity itself produces lateral transfers, or (3) the lateral transfers produce or alter patterns of spatial heterogeneity. We discuss homogeneous, mosaic, and interacting element approaches for dealing with space and identify both challenges and opportunities. Embracing spatial heterogeneity in ecosystem ecology will enhance understanding of pools, fluxes, and regulating factors in ecosystems; produce a more complete understanding of landscape function; and improve the ability to scale up or down.
Pp. 1-3
An Introduction to Finite Differencing
T. N. Krishnamurti; V. M. Hardiker; H. S. Bedi; L. Ramaswamy
Understanding the causes and consequences of spatial heterogeneity in ecosystem function represents a frontier in both ecosystem and landscape ecology. Ecology lacks a theory of ecosystem function that is spatially explicit, and there are few empirical studies from which to infer general conclusions. We present an organizing framework that clarifies consideration of ecosystem processes in heterogeneous landscapes; consider when spatial heterogeneity is important; discuss methods for incorporating spatial heterogeneity in ecosystem function; and identify challenges and opportunities for progress. Two general classes of ecosystem processes are distinguished. represent rates measured at a particular location; are assumed to be small relative to the measured response and are ignored. Spatial heterogeneity is important for point processes when (1) the average rate must be determined over an area that is spatially heterogeneous or (2) understanding or predicting the spatial pattern of process rates is an objective, for example, to identify areas of high or low rates, or to quantify the spatial pattern or scale of variability in rates. Lateral transfers are flows of materials, energy, or information from one location to another represented in a two-dimensional space. Spatial heterogeneity may be important for understanding lateral transfers when (1) the pattern of heterogeneity influences net lateral transfer and potentially the behavior of the whole system, (2) the spatial heterogeneity itself produces lateral transfers, or (3) the lateral transfers produce or alter patterns of spatial heterogeneity. We discuss homogeneous, mosaic, and interacting element approaches for dealing with space and identify both challenges and opportunities. Embracing spatial heterogeneity in ecosystem ecology will enhance understanding of pools, fluxes, and regulating factors in ecosystems; produce a more complete understanding of landscape function; and improve the ability to scale up or down.
Pp. 4-39
Time-Differencing Schemes
T. N. Krishnamurti; V. M. Hardiker; H. S. Bedi; L. Ramaswamy
Understanding the causes and consequences of spatial heterogeneity in ecosystem function represents a frontier in both ecosystem and landscape ecology. Ecology lacks a theory of ecosystem function that is spatially explicit, and there are few empirical studies from which to infer general conclusions. We present an organizing framework that clarifies consideration of ecosystem processes in heterogeneous landscapes; consider when spatial heterogeneity is important; discuss methods for incorporating spatial heterogeneity in ecosystem function; and identify challenges and opportunities for progress. Two general classes of ecosystem processes are distinguished. represent rates measured at a particular location; are assumed to be small relative to the measured response and are ignored. Spatial heterogeneity is important for point processes when (1) the average rate must be determined over an area that is spatially heterogeneous or (2) understanding or predicting the spatial pattern of process rates is an objective, for example, to identify areas of high or low rates, or to quantify the spatial pattern or scale of variability in rates. Lateral transfers are flows of materials, energy, or information from one location to another represented in a two-dimensional space. Spatial heterogeneity may be important for understanding lateral transfers when (1) the pattern of heterogeneity influences net lateral transfer and potentially the behavior of the whole system, (2) the spatial heterogeneity itself produces lateral transfers, or (3) the lateral transfers produce or alter patterns of spatial heterogeneity. We discuss homogeneous, mosaic, and interacting element approaches for dealing with space and identify both challenges and opportunities. Embracing spatial heterogeneity in ecosystem ecology will enhance understanding of pools, fluxes, and regulating factors in ecosystems; produce a more complete understanding of landscape function; and improve the ability to scale up or down.
Pp. 40-59
What Is a Spectral Model?
T. N. Krishnamurti; V. M. Hardiker; H. S. Bedi; L. Ramaswamy
Understanding the causes and consequences of spatial heterogeneity in ecosystem function represents a frontier in both ecosystem and landscape ecology. Ecology lacks a theory of ecosystem function that is spatially explicit, and there are few empirical studies from which to infer general conclusions. We present an organizing framework that clarifies consideration of ecosystem processes in heterogeneous landscapes; consider when spatial heterogeneity is important; discuss methods for incorporating spatial heterogeneity in ecosystem function; and identify challenges and opportunities for progress. Two general classes of ecosystem processes are distinguished. represent rates measured at a particular location; are assumed to be small relative to the measured response and are ignored. Spatial heterogeneity is important for point processes when (1) the average rate must be determined over an area that is spatially heterogeneous or (2) understanding or predicting the spatial pattern of process rates is an objective, for example, to identify areas of high or low rates, or to quantify the spatial pattern or scale of variability in rates. Lateral transfers are flows of materials, energy, or information from one location to another represented in a two-dimensional space. Spatial heterogeneity may be important for understanding lateral transfers when (1) the pattern of heterogeneity influences net lateral transfer and potentially the behavior of the whole system, (2) the spatial heterogeneity itself produces lateral transfers, or (3) the lateral transfers produce or alter patterns of spatial heterogeneity. We discuss homogeneous, mosaic, and interacting element approaches for dealing with space and identify both challenges and opportunities. Embracing spatial heterogeneity in ecosystem ecology will enhance understanding of pools, fluxes, and regulating factors in ecosystems; produce a more complete understanding of landscape function; and improve the ability to scale up or down.
Pp. 60-64
Lower-Order Spectral Model
T. N. Krishnamurti; V. M. Hardiker; H. S. Bedi; L. Ramaswamy
Understanding the causes and consequences of spatial heterogeneity in ecosystem function represents a frontier in both ecosystem and landscape ecology. Ecology lacks a theory of ecosystem function that is spatially explicit, and there are few empirical studies from which to infer general conclusions. We present an organizing framework that clarifies consideration of ecosystem processes in heterogeneous landscapes; consider when spatial heterogeneity is important; discuss methods for incorporating spatial heterogeneity in ecosystem function; and identify challenges and opportunities for progress. Two general classes of ecosystem processes are distinguished. represent rates measured at a particular location; are assumed to be small relative to the measured response and are ignored. Spatial heterogeneity is important for point processes when (1) the average rate must be determined over an area that is spatially heterogeneous or (2) understanding or predicting the spatial pattern of process rates is an objective, for example, to identify areas of high or low rates, or to quantify the spatial pattern or scale of variability in rates. Lateral transfers are flows of materials, energy, or information from one location to another represented in a two-dimensional space. Spatial heterogeneity may be important for understanding lateral transfers when (1) the pattern of heterogeneity influences net lateral transfer and potentially the behavior of the whole system, (2) the spatial heterogeneity itself produces lateral transfers, or (3) the lateral transfers produce or alter patterns of spatial heterogeneity. We discuss homogeneous, mosaic, and interacting element approaches for dealing with space and identify both challenges and opportunities. Embracing spatial heterogeneity in ecosystem ecology will enhance understanding of pools, fluxes, and regulating factors in ecosystems; produce a more complete understanding of landscape function; and improve the ability to scale up or down.
Pp. 65-75
Mathematical Aspects of Spectral Models
T. N. Krishnamurti; V. M. Hardiker; H. S. Bedi; L. Ramaswamy
Understanding the causes and consequences of spatial heterogeneity in ecosystem function represents a frontier in both ecosystem and landscape ecology. Ecology lacks a theory of ecosystem function that is spatially explicit, and there are few empirical studies from which to infer general conclusions. We present an organizing framework that clarifies consideration of ecosystem processes in heterogeneous landscapes; consider when spatial heterogeneity is important; discuss methods for incorporating spatial heterogeneity in ecosystem function; and identify challenges and opportunities for progress. Two general classes of ecosystem processes are distinguished. represent rates measured at a particular location; are assumed to be small relative to the measured response and are ignored. Spatial heterogeneity is important for point processes when (1) the average rate must be determined over an area that is spatially heterogeneous or (2) understanding or predicting the spatial pattern of process rates is an objective, for example, to identify areas of high or low rates, or to quantify the spatial pattern or scale of variability in rates. Lateral transfers are flows of materials, energy, or information from one location to another represented in a two-dimensional space. Spatial heterogeneity may be important for understanding lateral transfers when (1) the pattern of heterogeneity influences net lateral transfer and potentially the behavior of the whole system, (2) the spatial heterogeneity itself produces lateral transfers, or (3) the lateral transfers produce or alter patterns of spatial heterogeneity. We discuss homogeneous, mosaic, and interacting element approaches for dealing with space and identify both challenges and opportunities. Embracing spatial heterogeneity in ecosystem ecology will enhance understanding of pools, fluxes, and regulating factors in ecosystems; produce a more complete understanding of landscape function; and improve the ability to scale up or down.
Pp. 76-111
Multilevel Global Spectral Model
T. N. Krishnamurti; V. M. Hardiker; H. S. Bedi; L. Ramaswamy
Understanding the causes and consequences of spatial heterogeneity in ecosystem function represents a frontier in both ecosystem and landscape ecology. Ecology lacks a theory of ecosystem function that is spatially explicit, and there are few empirical studies from which to infer general conclusions. We present an organizing framework that clarifies consideration of ecosystem processes in heterogeneous landscapes; consider when spatial heterogeneity is important; discuss methods for incorporating spatial heterogeneity in ecosystem function; and identify challenges and opportunities for progress. Two general classes of ecosystem processes are distinguished. represent rates measured at a particular location; are assumed to be small relative to the measured response and are ignored. Spatial heterogeneity is important for point processes when (1) the average rate must be determined over an area that is spatially heterogeneous or (2) understanding or predicting the spatial pattern of process rates is an objective, for example, to identify areas of high or low rates, or to quantify the spatial pattern or scale of variability in rates. Lateral transfers are flows of materials, energy, or information from one location to another represented in a two-dimensional space. Spatial heterogeneity may be important for understanding lateral transfers when (1) the pattern of heterogeneity influences net lateral transfer and potentially the behavior of the whole system, (2) the spatial heterogeneity itself produces lateral transfers, or (3) the lateral transfers produce or alter patterns of spatial heterogeneity. We discuss homogeneous, mosaic, and interacting element approaches for dealing with space and identify both challenges and opportunities. Embracing spatial heterogeneity in ecosystem ecology will enhance understanding of pools, fluxes, and regulating factors in ecosystems; produce a more complete understanding of landscape function; and improve the ability to scale up or down.
Pp. 112-145
Physical Processes
T. N. Krishnamurti; V. M. Hardiker; H. S. Bedi; L. Ramaswamy
Understanding the causes and consequences of spatial heterogeneity in ecosystem function represents a frontier in both ecosystem and landscape ecology. Ecology lacks a theory of ecosystem function that is spatially explicit, and there are few empirical studies from which to infer general conclusions. We present an organizing framework that clarifies consideration of ecosystem processes in heterogeneous landscapes; consider when spatial heterogeneity is important; discuss methods for incorporating spatial heterogeneity in ecosystem function; and identify challenges and opportunities for progress. Two general classes of ecosystem processes are distinguished. represent rates measured at a particular location; are assumed to be small relative to the measured response and are ignored. Spatial heterogeneity is important for point processes when (1) the average rate must be determined over an area that is spatially heterogeneous or (2) understanding or predicting the spatial pattern of process rates is an objective, for example, to identify areas of high or low rates, or to quantify the spatial pattern or scale of variability in rates. Lateral transfers are flows of materials, energy, or information from one location to another represented in a two-dimensional space. Spatial heterogeneity may be important for understanding lateral transfers when (1) the pattern of heterogeneity influences net lateral transfer and potentially the behavior of the whole system, (2) the spatial heterogeneity itself produces lateral transfers, or (3) the lateral transfers produce or alter patterns of spatial heterogeneity. We discuss homogeneous, mosaic, and interacting element approaches for dealing with space and identify both challenges and opportunities. Embracing spatial heterogeneity in ecosystem ecology will enhance understanding of pools, fluxes, and regulating factors in ecosystems; produce a more complete understanding of landscape function; and improve the ability to scale up or down.
Pp. 146-191
Initialization Procedures
T. N. Krishnamurti; V. M. Hardiker; H. S. Bedi; L. Ramaswamy
Understanding the causes and consequences of spatial heterogeneity in ecosystem function represents a frontier in both ecosystem and landscape ecology. Ecology lacks a theory of ecosystem function that is spatially explicit, and there are few empirical studies from which to infer general conclusions. We present an organizing framework that clarifies consideration of ecosystem processes in heterogeneous landscapes; consider when spatial heterogeneity is important; discuss methods for incorporating spatial heterogeneity in ecosystem function; and identify challenges and opportunities for progress. Two general classes of ecosystem processes are distinguished. represent rates measured at a particular location; are assumed to be small relative to the measured response and are ignored. Spatial heterogeneity is important for point processes when (1) the average rate must be determined over an area that is spatially heterogeneous or (2) understanding or predicting the spatial pattern of process rates is an objective, for example, to identify areas of high or low rates, or to quantify the spatial pattern or scale of variability in rates. Lateral transfers are flows of materials, energy, or information from one location to another represented in a two-dimensional space. Spatial heterogeneity may be important for understanding lateral transfers when (1) the pattern of heterogeneity influences net lateral transfer and potentially the behavior of the whole system, (2) the spatial heterogeneity itself produces lateral transfers, or (3) the lateral transfers produce or alter patterns of spatial heterogeneity. We discuss homogeneous, mosaic, and interacting element approaches for dealing with space and identify both challenges and opportunities. Embracing spatial heterogeneity in ecosystem ecology will enhance understanding of pools, fluxes, and regulating factors in ecosystems; produce a more complete understanding of landscape function; and improve the ability to scale up or down.
Pp. 192-212
Spectral Energetics
T. N. Krishnamurti; V. M. Hardiker; H. S. Bedi; L. Ramaswamy
Understanding the causes and consequences of spatial heterogeneity in ecosystem function represents a frontier in both ecosystem and landscape ecology. Ecology lacks a theory of ecosystem function that is spatially explicit, and there are few empirical studies from which to infer general conclusions. We present an organizing framework that clarifies consideration of ecosystem processes in heterogeneous landscapes; consider when spatial heterogeneity is important; discuss methods for incorporating spatial heterogeneity in ecosystem function; and identify challenges and opportunities for progress. Two general classes of ecosystem processes are distinguished. represent rates measured at a particular location; are assumed to be small relative to the measured response and are ignored. Spatial heterogeneity is important for point processes when (1) the average rate must be determined over an area that is spatially heterogeneous or (2) understanding or predicting the spatial pattern of process rates is an objective, for example, to identify areas of high or low rates, or to quantify the spatial pattern or scale of variability in rates. Lateral transfers are flows of materials, energy, or information from one location to another represented in a two-dimensional space. Spatial heterogeneity may be important for understanding lateral transfers when (1) the pattern of heterogeneity influences net lateral transfer and potentially the behavior of the whole system, (2) the spatial heterogeneity itself produces lateral transfers, or (3) the lateral transfers produce or alter patterns of spatial heterogeneity. We discuss homogeneous, mosaic, and interacting element approaches for dealing with space and identify both challenges and opportunities. Embracing spatial heterogeneity in ecosystem ecology will enhance understanding of pools, fluxes, and regulating factors in ecosystems; produce a more complete understanding of landscape function; and improve the ability to scale up or down.
Pp. 213-251