Catálogo de publicaciones - libros
Maintenance Theory of Reliability
Toshio Nakagawa
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-1-85233-939-5
ISBN electrónico
978-1-84628-221-8
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer-Verlag London Limited 2005
Cobertura temática
Tabla de contenidos
Introduction
Toshio Nakagawa
We analyse the bifurcation sequence of typical simple plane shear flows numerically by using a bifurcation analysis and also a DNS technique, considering flows with and without a system rotation about a spanwise axis. Our analysis is applied to (1) plane Couette flow, (2) plane Poiseuille flow, and (3) flow with a cubic velocity profile.
Pp. 1-38
Repair Maintenance
Toshio Nakagawa
We analyse the bifurcation sequence of typical simple plane shear flows numerically by using a bifurcation analysis and also a DNS technique, considering flows with and without a system rotation about a spanwise axis. Our analysis is applied to (1) plane Couette flow, (2) plane Poiseuille flow, and (3) flow with a cubic velocity profile.
Pp. 39-68
Age Replacement
Toshio Nakagawa
We analyse the bifurcation sequence of typical simple plane shear flows numerically by using a bifurcation analysis and also a DNS technique, considering flows with and without a system rotation about a spanwise axis. Our analysis is applied to (1) plane Couette flow, (2) plane Poiseuille flow, and (3) flow with a cubic velocity profile.
Pp. 69-94
Periodic Replacement
Toshio Nakagawa
We analyse the bifurcation sequence of typical simple plane shear flows numerically by using a bifurcation analysis and also a DNS technique, considering flows with and without a system rotation about a spanwise axis. Our analysis is applied to (1) plane Couette flow, (2) plane Poiseuille flow, and (3) flow with a cubic velocity profile.
Pp. 95-116
Block Replacement
Toshio Nakagawa
We analyse the bifurcation sequence of typical simple plane shear flows numerically by using a bifurcation analysis and also a DNS technique, considering flows with and without a system rotation about a spanwise axis. Our analysis is applied to (1) plane Couette flow, (2) plane Poiseuille flow, and (3) flow with a cubic velocity profile.
Pp. 117-134
Preventive Maintenance
Toshio Nakagawa
We analyse the bifurcation sequence of typical simple plane shear flows numerically by using a bifurcation analysis and also a DNS technique, considering flows with and without a system rotation about a spanwise axis. Our analysis is applied to (1) plane Couette flow, (2) plane Poiseuille flow, and (3) flow with a cubic velocity profile.
Pp. 135-169
Imperfect Preventive Maintenance
Toshio Nakagawa
We analyse the bifurcation sequence of typical simple plane shear flows numerically by using a bifurcation analysis and also a DNS technique, considering flows with and without a system rotation about a spanwise axis. Our analysis is applied to (1) plane Couette flow, (2) plane Poiseuille flow, and (3) flow with a cubic velocity profile.
Pp. 171-199
Inspection Policies
Toshio Nakagawa
We analyse the bifurcation sequence of typical simple plane shear flows numerically by using a bifurcation analysis and also a DNS technique, considering flows with and without a system rotation about a spanwise axis. Our analysis is applied to (1) plane Couette flow, (2) plane Poiseuille flow, and (3) flow with a cubic velocity profile.
Pp. 201-233
Modified Maintenance Models
Toshio Nakagawa
We analyse the bifurcation sequence of typical simple plane shear flows numerically by using a bifurcation analysis and also a DNS technique, considering flows with and without a system rotation about a spanwise axis. Our analysis is applied to (1) plane Couette flow, (2) plane Poiseuille flow, and (3) flow with a cubic velocity profile.
Pp. 235-265