Catálogo de publicaciones - libros

Compartir en
redes sociales


Maintenance Theory of Reliability

Toshio Nakagawa

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-85233-939-5

ISBN electrónico

978-1-84628-221-8

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag London Limited 2005

Tabla de contenidos

Introduction

Toshio Nakagawa

We analyse the bifurcation sequence of typical simple plane shear flows numerically by using a bifurcation analysis and also a DNS technique, considering flows with and without a system rotation about a spanwise axis. Our analysis is applied to (1) plane Couette flow, (2) plane Poiseuille flow, and (3) flow with a cubic velocity profile.

Pp. 1-38

Repair Maintenance

Toshio Nakagawa

We analyse the bifurcation sequence of typical simple plane shear flows numerically by using a bifurcation analysis and also a DNS technique, considering flows with and without a system rotation about a spanwise axis. Our analysis is applied to (1) plane Couette flow, (2) plane Poiseuille flow, and (3) flow with a cubic velocity profile.

Pp. 39-68

Age Replacement

Toshio Nakagawa

We analyse the bifurcation sequence of typical simple plane shear flows numerically by using a bifurcation analysis and also a DNS technique, considering flows with and without a system rotation about a spanwise axis. Our analysis is applied to (1) plane Couette flow, (2) plane Poiseuille flow, and (3) flow with a cubic velocity profile.

Pp. 69-94

Periodic Replacement

Toshio Nakagawa

We analyse the bifurcation sequence of typical simple plane shear flows numerically by using a bifurcation analysis and also a DNS technique, considering flows with and without a system rotation about a spanwise axis. Our analysis is applied to (1) plane Couette flow, (2) plane Poiseuille flow, and (3) flow with a cubic velocity profile.

Pp. 95-116

Block Replacement

Toshio Nakagawa

We analyse the bifurcation sequence of typical simple plane shear flows numerically by using a bifurcation analysis and also a DNS technique, considering flows with and without a system rotation about a spanwise axis. Our analysis is applied to (1) plane Couette flow, (2) plane Poiseuille flow, and (3) flow with a cubic velocity profile.

Pp. 117-134

Preventive Maintenance

Toshio Nakagawa

We analyse the bifurcation sequence of typical simple plane shear flows numerically by using a bifurcation analysis and also a DNS technique, considering flows with and without a system rotation about a spanwise axis. Our analysis is applied to (1) plane Couette flow, (2) plane Poiseuille flow, and (3) flow with a cubic velocity profile.

Pp. 135-169

Imperfect Preventive Maintenance

Toshio Nakagawa

We analyse the bifurcation sequence of typical simple plane shear flows numerically by using a bifurcation analysis and also a DNS technique, considering flows with and without a system rotation about a spanwise axis. Our analysis is applied to (1) plane Couette flow, (2) plane Poiseuille flow, and (3) flow with a cubic velocity profile.

Pp. 171-199

Inspection Policies

Toshio Nakagawa

We analyse the bifurcation sequence of typical simple plane shear flows numerically by using a bifurcation analysis and also a DNS technique, considering flows with and without a system rotation about a spanwise axis. Our analysis is applied to (1) plane Couette flow, (2) plane Poiseuille flow, and (3) flow with a cubic velocity profile.

Pp. 201-233

Modified Maintenance Models

Toshio Nakagawa

We analyse the bifurcation sequence of typical simple plane shear flows numerically by using a bifurcation analysis and also a DNS technique, considering flows with and without a system rotation about a spanwise axis. Our analysis is applied to (1) plane Couette flow, (2) plane Poiseuille flow, and (3) flow with a cubic velocity profile.

Pp. 235-265