Catálogo de publicaciones - libros

Compartir en
redes sociales


Nitrogen Cycling in the Americas: Natural and Anthropogenic Influences and Controls

Luiz A. Martinelli ; Robert W. Howarth (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Ecology; Ecosystems; Biogeosciences; Ecotoxicology

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-4020-4717-6

ISBN electrónico

978-1-4020-5517-1

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer 2006

Cobertura temática

Tabla de contenidos

Sources of reactive nitrogen affecting ecosystems in Latin America and the Caribbean: current trends and future perspectives

Luiz A. Martinelli; Robert W. Howarth; Elvira Cuevas; Solange Filoso; Amy T. Austin; Loreta Donoso; Vera Huszar; Dennis Keeney; Luciene L. Lara; Carlos Llerena; George Mcissac; Ernesto Medina; Jorge Ortiz-Zayas; Donald Scavia; David W. Schindler; Doris Soto; Alan Townsend

While the amount of reactive nitrogen circulating at the global level has increased markedly in the last century, the effects of this increase are largely seen at the regional level due to interacting ecological and socio-economic factors. In contrast with most other regions of the world, Latin America and the Caribbean (LA-Ca) stand out due to the fact that the major input of reactive nitrogen (Nr) still occurs naturally via biological nitrogen fixation (BNF) in natural ecosystems as opposed to anthropogenic inputs of synthetic fertilizer, fossil fuel combustion and cropping with leguminous species. Largely due to economic reasons, the consumption of fertilizer N in the LA-Ca region is still low in comparison with the average consumption of the world. However, the fertilizer N consumption is increasing at a much faster rate than that in developed regions of the world, like USA and Canada. The Nr production through BNF in cultivated plants that fix nitrogen (C-BNF) is 5 times lower than that occurring naturally in Latin America, but is still equivalent to 16% of the world C-BNF. The cultivation of nitrogen-fixing crop species in the LA-Ca region is also increasing, almost entirely due to the expansion of soybean fields in the central and northern regions of Brazil and the Pampa region of Argentina. Other anthropogenic activities in the region that contribute to an increase in the circulation of reactive nitrogen include the impact of biomass burning and urbanization. In the last decade, an average of 47,000 km per year of forests was burned in the LACa region. The environmental impact of urban centers in the LA-Ca region has become very important, since an intense urbanization process is occurring in this region, at an intensity that far exceeds urban development in the northern hemisphere. The consequences of increased urbanization include increased emissions of NO to the atmosphere due to the fossil fuel combustion, and the lack of sewage treatment facilities in most cities of the LA-Ca result in a large volume of untreated sewage discharged into surface waters, creating serious environmental problems. The combination of rapid urbanization and agricultural intensification in this region suggest that concern is warranted for the potential for increase in the circulation of reactive nitrogen in the very near future. At the same time, the opportunity still exists to mitigate some of the consequences of human impact on the nitrogen cycle in a region that still maintains a large fraction of its natural ecosystems intact.

Pp. 3-24

A review of anthropogenic sources of nitrogen and their effects on Canadian aquatic ecosystems

David W. Schindler; Peter J. Dillon; Hans Schreier

Nitrogen releases to air and water are low in most of Canada, but in southern areas with rapid development there are telltale signs of the problems from releases to air and water that are described elsewhere in this volume. These include higher nitrogen in water and releases to the atmosphere from urban areas, industry and agriculture. As a result, in parts of Ontario and Quebec underlain by Precambrian geology, nitrogen deposition is near the critical loads found for geologically similar areas of Europe. In particular, combined inputs of sulphuric and nitric acids are causing base cation depletion in forest soils and keeping some lakes at pH values too low to allow the recovery of biological communities. In southern Ontario, Alberta and British Columbia, rapidly expanding human populations, industry and agriculture are causing high concentrations of nitrate in surface and groundwaters. At present, there is little sign of estuarine eutrophication in Canada, but it appears to be imminent on the Pacific coast, as the result of expanding human populations and intensifying agriculture in the lower Fraser Valley and Puget Sound. Steps should be taken now to prevent the widespread problems caused by nitrogen pollution that have occurred in Europe, the USA, and other populous and industrialized regions.

Pp. 25-44

More is less: agricultural impacts on the N cycle in Argentina

Amy T. Austin; Gervasio Piñeiro; Marina Gonzalez-Polo

Human impact on nitrogen cycling, in particular the introduction of reactive nitrogen in terrestrial and aquatic ecosystems, can be examined at multiple scales, from the global impact on atmospheric chemistry to the impact of human activities on soil organic matter and fertility at the scale of square meters. Nevertheless, anthropogenic loading of nitrogen cycling in natural and managed ecosystems can be seen most directly at the regional scale, where concentrated human activity results in disruption of the nitrogen balance, with consequences for biogeochemical cycling and their interactions. Differences in land-use and agricultural practices between North and South America, and the importance of economic drivers that determine the fate of new reactive nitrogen demonstrate a contrasting picture of human impact on N cycling when the consequences are considered at the global vs. the regional scale. In particular, in the Pampa region of Argentina, the central agricultural zone of the country, the expansion of soybean cultivation in the last 20 years and the use of synthetic fertilizers have resulted in an influx of reactive nitrogen into these systems, with unexpected consequences for the nitrogen balance. A mass balance of nitrogen for soybean demonstrates that increased nitrogen inputs from biological fixation do not compensate for losses due to seed export, such that most areas under soybean cultivation are currently experiencing a substantive net loss of nitrogen. In addition, other crops that are currently being fertilized still show a net loss of nitrogen also due to the effect of primary exports from these agroecosystems. These simple models demonstrate that socioeconomic factors in large part drive the contrasting effects of anthropogenic impact on nitrogen cycling at global vs. regional scales. The future impact on nitrogen cycling in the Americas requires an integration of both ecological factors and socioeconomic drivers that will ultimately determine human disruption of the nitrogen cycle.

Pp. 45-60

Human activities changing the nitrogen cycle in Brazil

Solange Filoso; Luiz Antonio Martinelli; Robert W. Howarth; Elizabeth W. Boyer; Frank Dentener

The production of reactive nitrogen worldwide has more than doubled in the last century because of human activities and population growth. Advances in our understanding of the nitrogen cycle and the impacts of anthropogenic activities on regional to global scales is largely hindered by the paucity of information about nitrogen inputs from human activities in fast-developing regions of the world such as the tropics. In this paper, we estimate nitrogen inputs and outputs in Brazil, which is the world’s largest tropical country. We determined that the N cycle is increasingly controlled by human activities rather than natural processes. Nitrogen inputs to Brazil from human activities practically doubled from 1995 to 2002, mostly because of nitrogen production through biological fixation in agricultural systems. This is in contrast to industrialized countries of the temperate zone, where fertilizer application and atmospheric deposition are the main sources of anthropogenic nitrogen. In Brazil, the production of soybean crops over an area of less than 20 million ha, was responsible for about 3.2 Tg N or close to one-third of the N inputs from anthropogenic sources in 2002. Moreover, cattle pastures account for almost 70% of the estimated 280 × 10 ha of agricultural land in Brazil and potentially fix significant amounts of N when well managed, further increasing the importance of biological nitrogen fixation in the nitrogen budget. Much of these anthropogenic inputs occur in the Brazilian savannah region (), while more urbanized regions such as the state of São Paulo also have high rates of nitrogenous fertilizer inputs. In the Amazon, rates of anthropogenic nitrogen inputs are relatively low, but continuing conversion of natural forests into cattle pasture or secondary forests potentially add a significant amount of new nitrogen to Brazil given the vast area of the region. Better measurements of biological fixation rates in Brazil are necessary for improving the nitrogen budgets, especially at a more refined spatial scale.

Pp. 61-89

Assessment of nitrogen flows into the Cuban landscape

Julio A. Baisre

The alteration of the nitrogen (N) cycle by human activities is widespread and has often resulted in increased flows of nitrogen to the marine environment. In this paper we have attempted to know the changes of N fluxes in Cuba by quantifying the N inputs to the landscape from (1) fertilizer applications, (2) atmospheric deposition, (3) biological nitrogen fixation and (4) net import of food and feeds. N-inputs to the country progressively increased until the end of the 20th century, reaching a peak during the 80s when low cost fertilizer imported from the former Soviet Union led to heavy rates of application. This rapid growth represented more than a 5-fold increase with respect to pristine values; higher than the two-fold global increase of anthropogenic N reported by Vitousek et al. (1997 Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7:737–750). Inorganic fertilizer was the largest single source of reactive N, followed by atmospheric deposition, biological fixation, and net imports of foods and feed-stocks. Nitrogen inputs peaked in 1987 and data expressed on an area basis show that N flux to the Cuban landscape, in the 80s, was one of the highest reported in the literature. During the 90s, there was a dramatic drop in nitrogen inputs mainly associated to a decrease in the use of inorganic fertilizer. Other factors reducing nutrient inflows to Cuba, during the same period, were imports of foodstuff and livestock feeds, a decrease of nitrogen oxide emissions, and a decrease in the sugar cane crop area. Using an empirical relationship (Howarth et al. 1996 Regional nitrogen budgets and riverine N & O fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry 35:75–139) we present a very preliminary estimate of N-inputs to coastal waters and discuss the consequences of these changes on the coastal zone.

Pp. 91-108

Urban influences on the nitrogen cycle in Puerto Rico

Jorge R. Ortiz-Zayas; Elvira Cuevas; Olga L. Mayol-Bracero; Loreto Donoso; Ivonne Trebs; Debora Figueroa-Nieves; William H. McDowell

Anthropogenic actions are altering fluxes of nitrogen (N) in the biosphere at unprecedented rates. Efforts to study these impacts have concentrated in the Northern hemisphere, where experimental data are available. In tropical developing countries, however, experimental studies are lacking. This paper summarizes available data and assesses the impacts of human activities on N fluxes in Puerto Rico, a densely populated Caribbean island that has experienced drastic landscape transformations over the last century associated with rapid socioeconomic changes. N yield calculations conducted in several watersheds of different anthropogenic influences revealed that disturbed watersheds export more N per unit area than undisturbed forested watersheds. Export of N from urban watersheds ranged from 4.8 kg ha year in the Rí o Bayamón watershed to 32.9 kg ha year in the highly urbanized Río Piedras watershed and 33.3 kg ha year in the rural-agricultural Río Grande de Añasco watershed. Along with land use, mean annual runoff explained most of the variance in fluvial N yield. Wastewater generated in the San Juan Metropolitan Area receives primary treatment before it is discharged into the Atlantic Ocean. These discharges are N-rich and export large amounts of N to the ocean at a rate of about 140 kg ha year. Data on wet deposition of inorganic N (NH + NO) suggest that rates of atmospheric N deposition are increasing in the pristine forests of Puerto Rico. Stationary and mobile sources of NO (NO+NO) and NO generated in the large urban centers may be responsible for this trend. Comprehensive measurements are required in Puerto Rico to quantitatively characterize the local N cycle. More research is required to assess rates of atmospheric N deposition, N fixation in natural and human-dominated landscapes, N-balance associated with food and feed trade, and denitrification.

Pp. 109-133

Nitrogen and phosphorus budgets for a tropical watershed impacted by agricultural land use: Guayas, Ecuador

Mercy J. Borbor-Cordova; Elizabeth W. Boyer; William H. Mcdowell; Charles A. Hall

Large-scale changes in land use are occurring in many tropical regions, with significant impacts on nitrogen and phosphorus biogeochemistry. In this study we examine the relationships between land use, anthropogenic nutrient inputs, and riverine nutrient exports in a major agricultural watershed of the Pacific coast of South America, the Guayas River basin of Ecuador. We present comprehensive nutrient budgets for nitrogen (N) and phosphorous (P) for the Guayas River basin and 10 sub-watersheds. We quantify the four major anthropogenic nutrient fluxes into and out of the region: N and P fertilizer application, N fixation by leguminous crops, net import/export of N and P in agricultural products (food and feed), and atmospheric deposition. We also estimate inputs of N from biological N fixation in forests and of P from weathering sources in soils and bedrock. The sum of these sources represents net inputs of N and P to each watershed region. Overall, synthetic fertilizers are the largest input to the Guayas Basin for N (53%) and P (57%), and the largest outputs are N and P in crops. Losses of N and P in river export account for 14–38% of total N and P inputs, and there is significant accumulation of N and P, or unmeasured forms of N and P export, in most of the sub-basins. Nutrient balances are indicative of the sustainability of land use practices in a region, where a negative balance of N or P indicates nutrient depletion and subsequent loss of soil fertility, yield, and economic viability. Although the nutrient balance of the entire Guayas Basin is positive, there are negative or near zero balances in two sub-watersheds with extensive banana, coffee and permanent crops. In these basins, degradation of soil quality may be occurring due to these net nutrient losses. Our data show that nutrients are leaving the basin primarily as export crops, with riverine losses of nutrients smaller than crop exports. Nonetheless, there is a direct relationship between nutrient inputs and river outputs, suggesting that agricultural management practices in the basin may have direct impacts on N and P delivery to the highly productive Guayas estuary.

Pp. 135-161

The influence of climate on average nitrogen export from large watersheds in the Northeastern United States

R. W. Howarth; D. P. Swaney; E. W. Boyer; R. Marino; N. Jaworski; C. Goodale

The flux of nitrogen in large rivers in North America and Europe is well explained as a function of the net anthropogenic inputs of nitrogen to the landscape, with on average 20 to 25% of these inputs exported in rivers and 75 to 80% of the nitrogen retained or denitrified in the landscape. Here, we use data for average riverine nitrogen fluxes and anthropogenic inputs of nitrogen over a 6-year period (1988–1993) for 16 major watersheds in the northeastern United States to examine if there is also a climatic influence on nitrogen fluxes in rivers. Previous studies have shown that for any given river, nitrogen fluxes are greater in years with higher discharge, but this can be interpreted as storage of nitrogen in the landscape during dry years and flushing of this stored nitrogen during wet years. Our analyses demonstrate that there is also a longer-term steady-state influence of climate on riverine nitrogen fluxes. Those watersheds that have higher precipitation and higher discharge export a greater fraction of the net anthropogenic inputs of nitrogen. This fractional export ranges from 10 to 15% of the nitrogen inputs in drier watersheds in the northeastern United States to over 35% in the wetter watersheds. We believe this is driven by lower rates of denitrification in the wetter watersheds, perhaps because shorter water residence times do not allow for as much denitrification in riparian wetlands and low-order streams. Using mean projections for the consequences of future climate change on precipitation and discharge, we estimate that nitrogen fluxes in the Susquehanna River to Chesapeake Bay may increase by 3 to 17% by 2030 and by 16 to 65% by 2095 due to greater fractional delivery of net anthropogenic nitrogen inputs as precipitation and discharge increase. Although these projections are highly uncertain, they suggest a need to better consider the influence of climate on riverine nitrogen fluxes as part of management efforts to control coastal nitrogen pollution.

Pp. 163-186

Coastal eutrophication assessment in the United States

Donald Scavia; Suzanne B. Bricker

Recent national assessments document that nitrogen-driven coastal eutrophication is widespread and increasing in the United States. This significant coastal pollution problem includes impacts including increased areas and severity of hypoxic and anoxic waters; alteration of food webs; degradation and loss of sea grass beds, kelp beds and coral reefs; loss of biodiversity; and increased incidences and duration of harmful algal blooms. In this paper, we review two complementary approaches to assessing the causes and consequences of these trends, as well as potential remedies for them. The first is a national-scale assessment, drawn primarily from expert knowledge of those most familiar with the individual estuaries and integrated into a common analysis framework. The second approach, focused on the Mississippi/Atchafalaya basin — the largest US drainage basin — draws upon both quantitative and qualitative analyses within a comprehensive framework, Integrated Assessment.

Pp. 187-208

Nitrogen cycling in tropical and temperate savannas

M. M. C. Bustamante; E. Medina; G. P. Asner; G. B. Nardoto; D. C. Garcia-Montiel

Savannas are the most common vegetation type in the tropics and subtropics, ranging in physiognomy from grasslands with scattered woody plants to woodlands with heterogeneous grass cover. Productivity and organic matter turnover in savannas are controlled by interactions between water and nutrient availability, and this basic environmental structure is modified by fire frequency and land management practices. We compared temperate and tropical savannas in order to understand the strength of nitrogen (N) limitation of productivity. American tropical and temperate savannas are N limited systems, and the N cycle differs according to the woody plant density, fire frequency, land use change, N deposition and N fixation. Grazing and conversion to pasture have been the predominant land-use changes in most savannas. In the Cerrado and the Llanos tropical savannas, intensified use of fire for pasture management is leading to decreased woody plant density. Oppositely, in the Chaco and North American temperate savannas, fire suppression and grazing are leading to increases in woody density. In addition, the higher soil P availability in the Gran Chaco and the higher N deposition in North American savannas may be contributing to increases of N cycling and net productivity rates. Some aspects of the N budget for savannas of the American continent are still unclear and require further analysis to determine rates of N fixation, and to understand how spatial and temporal soil heterogeneity control N fluxes through soil solution and into streams.

Pp. 209-237