Catálogo de publicaciones - libros
Evolutionary Synthesis of Pattern Recognition Systems
Bir Bhanu Yingqiang Lin Krzysztof Krawiec
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-0-387-21295-1
ISBN electrónico
978-0-387-24452-5
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer Science+Business Media, Inc. 2005
Tabla de contenidos
Introduction
Bir Bhanu; Yingqiang Lin; Krzysztof Krawiec
Regarding the scientific method of experimentation, it is desirable to construct an accurate, reliable, consistent and non-arbitrary representation of multi-objective evolutionary algorithm (MOEA) architectures and performance over a variety of multi-objective optimization problems (MOPs). In particular, through the use of standard procedures and criteria, one should attempt to minimize the influence of bias or prejudice of the experimenter when testing a MOEA hypothesis. The design of each experiment must conform then to an accepted “standard” approach as reflected in any generic scientific method. When employing the scientific method, the detailed design of MOEA experiments can draw heavily from outlines presented by Barr et al. [93] and Jackson et al. [765]. These generic articles discuss computational experiment design for heuristic methods, providing guidelines for reporting results and ensuring their reproducibility. Specifically, they suggest that a well-designed experiment follows the following steps: 1. Define experimental goals; 2. Choose measures of performance - metrics; 3. Design and execute the experiment; 4. Analyze data and draw conclusions; 5. Report experimental results.
Pp. 1-9
Feature Synthesis for Object Detection
Bir Bhanu; Yingqiang Lin; Krzysztof Krawiec
Regarding the scientific method of experimentation, it is desirable to construct an accurate, reliable, consistent and non-arbitrary representation of multi-objective evolutionary algorithm (MOEA) architectures and performance over a variety of multi-objective optimization problems (MOPs). In particular, through the use of standard procedures and criteria, one should attempt to minimize the influence of bias or prejudice of the experimenter when testing a MOEA hypothesis. The design of each experiment must conform then to an accepted “standard” approach as reflected in any generic scientific method. When employing the scientific method, the detailed design of MOEA experiments can draw heavily from outlines presented by Barr et al. [93] and Jackson et al. [765]. These generic articles discuss computational experiment design for heuristic methods, providing guidelines for reporting results and ensuring their reproducibility. Specifically, they suggest that a well-designed experiment follows the following steps: 1. Define experimental goals; 2. Choose measures of performance - metrics; 3. Design and execute the experiment; 4. Analyze data and draw conclusions; 5. Report experimental results.
Pp. 11-78
Mdl-Based Efficient Genetic Programming for Object Detection
Bir Bhanu; Yingqiang Lin; Krzysztof Krawiec
Regarding the scientific method of experimentation, it is desirable to construct an accurate, reliable, consistent and non-arbitrary representation of multi-objective evolutionary algorithm (MOEA) architectures and performance over a variety of multi-objective optimization problems (MOPs). In particular, through the use of standard procedures and criteria, one should attempt to minimize the influence of bias or prejudice of the experimenter when testing a MOEA hypothesis. The design of each experiment must conform then to an accepted “standard” approach as reflected in any generic scientific method. When employing the scientific method, the detailed design of MOEA experiments can draw heavily from outlines presented by Barr et al. [93] and Jackson et al. [765]. These generic articles discuss computational experiment design for heuristic methods, providing guidelines for reporting results and ensuring their reproducibility. Specifically, they suggest that a well-designed experiment follows the following steps: 1. Define experimental goals; 2. Choose measures of performance - metrics; 3. Design and execute the experiment; 4. Analyze data and draw conclusions; 5. Report experimental results.
Pp. 79-119
Feature Selection for Object Detection
Bir Bhanu; Yingqiang Lin; Krzysztof Krawiec
Regarding the scientific method of experimentation, it is desirable to construct an accurate, reliable, consistent and non-arbitrary representation of multi-objective evolutionary algorithm (MOEA) architectures and performance over a variety of multi-objective optimization problems (MOPs). In particular, through the use of standard procedures and criteria, one should attempt to minimize the influence of bias or prejudice of the experimenter when testing a MOEA hypothesis. The design of each experiment must conform then to an accepted “standard” approach as reflected in any generic scientific method. When employing the scientific method, the detailed design of MOEA experiments can draw heavily from outlines presented by Barr et al. [93] and Jackson et al. [765]. These generic articles discuss computational experiment design for heuristic methods, providing guidelines for reporting results and ensuring their reproducibility. Specifically, they suggest that a well-designed experiment follows the following steps: 1. Define experimental goals; 2. Choose measures of performance - metrics; 3. Design and execute the experiment; 4. Analyze data and draw conclusions; 5. Report experimental results.
Pp. 121-164
Evolutionary Feature Synthesis for Object Recognition
Bir Bhanu; Yingqiang Lin; Krzysztof Krawiec
Regarding the scientific method of experimentation, it is desirable to construct an accurate, reliable, consistent and non-arbitrary representation of multi-objective evolutionary algorithm (MOEA) architectures and performance over a variety of multi-objective optimization problems (MOPs). In particular, through the use of standard procedures and criteria, one should attempt to minimize the influence of bias or prejudice of the experimenter when testing a MOEA hypothesis. The design of each experiment must conform then to an accepted “standard” approach as reflected in any generic scientific method. When employing the scientific method, the detailed design of MOEA experiments can draw heavily from outlines presented by Barr et al. [93] and Jackson et al. [765]. These generic articles discuss computational experiment design for heuristic methods, providing guidelines for reporting results and ensuring their reproducibility. Specifically, they suggest that a well-designed experiment follows the following steps: 1. Define experimental goals; 2. Choose measures of performance - metrics; 3. Design and execute the experiment; 4. Analyze data and draw conclusions; 5. Report experimental results.
Pp. 165-199
Linear Genetic Programming for Object Recognition
Bir Bhanu; Yingqiang Lin; Krzysztof Krawiec
Regarding the scientific method of experimentation, it is desirable to construct an accurate, reliable, consistent and non-arbitrary representation of multi-objective evolutionary algorithm (MOEA) architectures and performance over a variety of multi-objective optimization problems (MOPs). In particular, through the use of standard procedures and criteria, one should attempt to minimize the influence of bias or prejudice of the experimenter when testing a MOEA hypothesis. The design of each experiment must conform then to an accepted “standard” approach as reflected in any generic scientific method. When employing the scientific method, the detailed design of MOEA experiments can draw heavily from outlines presented by Barr et al. [93] and Jackson et al. [765]. These generic articles discuss computational experiment design for heuristic methods, providing guidelines for reporting results and ensuring their reproducibility. Specifically, they suggest that a well-designed experiment follows the following steps: 1. Define experimental goals; 2. Choose measures of performance - metrics; 3. Design and execute the experiment; 4. Analyze data and draw conclusions; 5. Report experimental results.
Pp. 201-232
Applications of Linear Genetic Programming for Object Recognition
Bir Bhanu; Yingqiang Lin; Krzysztof Krawiec
Regarding the scientific method of experimentation, it is desirable to construct an accurate, reliable, consistent and non-arbitrary representation of multi-objective evolutionary algorithm (MOEA) architectures and performance over a variety of multi-objective optimization problems (MOPs). In particular, through the use of standard procedures and criteria, one should attempt to minimize the influence of bias or prejudice of the experimenter when testing a MOEA hypothesis. The design of each experiment must conform then to an accepted “standard” approach as reflected in any generic scientific method. When employing the scientific method, the detailed design of MOEA experiments can draw heavily from outlines presented by Barr et al. [93] and Jackson et al. [765]. These generic articles discuss computational experiment design for heuristic methods, providing guidelines for reporting results and ensuring their reproducibility. Specifically, they suggest that a well-designed experiment follows the following steps: 1. Define experimental goals; 2. Choose measures of performance - metrics; 3. Design and execute the experiment; 4. Analyze data and draw conclusions; 5. Report experimental results.
Pp. 233-276
Summary and Future Work
Bir Bhanu; Yingqiang Lin; Krzysztof Krawiec
Regarding the scientific method of experimentation, it is desirable to construct an accurate, reliable, consistent and non-arbitrary representation of multi-objective evolutionary algorithm (MOEA) architectures and performance over a variety of multi-objective optimization problems (MOPs). In particular, through the use of standard procedures and criteria, one should attempt to minimize the influence of bias or prejudice of the experimenter when testing a MOEA hypothesis. The design of each experiment must conform then to an accepted “standard” approach as reflected in any generic scientific method. When employing the scientific method, the detailed design of MOEA experiments can draw heavily from outlines presented by Barr et al. [93] and Jackson et al. [765]. These generic articles discuss computational experiment design for heuristic methods, providing guidelines for reporting results and ensuring their reproducibility. Specifically, they suggest that a well-designed experiment follows the following steps: 1. Define experimental goals; 2. Choose measures of performance - metrics; 3. Design and execute the experiment; 4. Analyze data and draw conclusions; 5. Report experimental results.
Pp. 277-281