Catálogo de publicaciones - libros

Compartir en
redes sociales


Spectral Method in Multiaxial Random Fatigue

Adam Niesłony Ewald Macha

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-73822-0

ISBN electrónico

978-3-540-73823-7

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2007

Tabla de contenidos

Introduction

Adam Niesłony; Ewald Macha

Algorithms for solving geometric problems are widely used in many scientific disciplines. Applications range from computer vision and robotics to molecular biology and astrophysics. Proving the correctness of these algorithms is vital in order to boost confidence in them. By specifying the algorithms formally in a theorem prover such as Isabelle, it is hoped that rigorous proofs showing their correctness will be obtained. This paper outlines our current framework for reasoning about geometric algorithms in Isabelle. It focuses on our case study of the convex hull problem and shows how Hoare logic can be used to prove the correctness of such algorithms.

Pp. 3-5

Spectral Methods for Fatigue Description

Adam Niesłony; Ewald Macha

Algorithms for solving geometric problems are widely used in many scientific disciplines. Applications range from computer vision and robotics to molecular biology and astrophysics. Proving the correctness of these algorithms is vital in order to boost confidence in them. By specifying the algorithms formally in a theorem prover such as Isabelle, it is hoped that rigorous proofs showing their correctness will be obtained. This paper outlines our current framework for reasoning about geometric algorithms in Isabelle. It focuses on our case study of the convex hull problem and shows how Hoare logic can be used to prove the correctness of such algorithms.

Pp. 7-36

Theoretical Fundamentals

Adam Niesłony; Ewald Macha

Algorithms for solving geometric problems are widely used in many scientific disciplines. Applications range from computer vision and robotics to molecular biology and astrophysics. Proving the correctness of these algorithms is vital in order to boost confidence in them. By specifying the algorithms formally in a theorem prover such as Isabelle, it is hoped that rigorous proofs showing their correctness will be obtained. This paper outlines our current framework for reasoning about geometric algorithms in Isabelle. It focuses on our case study of the convex hull problem and shows how Hoare logic can be used to prove the correctness of such algorithms.

Pp. 37-66

Algorithm of Spectral Method for Evaluation of Fatigue Life

Adam Niesłony; Ewald Macha

Algorithms for solving geometric problems are widely used in many scientific disciplines. Applications range from computer vision and robotics to molecular biology and astrophysics. Proving the correctness of these algorithms is vital in order to boost confidence in them. By specifying the algorithms formally in a theorem prover such as Isabelle, it is hoped that rigorous proofs showing their correctness will be obtained. This paper outlines our current framework for reasoning about geometric algorithms in Isabelle. It focuses on our case study of the convex hull problem and shows how Hoare logic can be used to prove the correctness of such algorithms.

Pp. 67-71

Simulations

Adam Niesłony; Ewald Macha

Algorithms for solving geometric problems are widely used in many scientific disciplines. Applications range from computer vision and robotics to molecular biology and astrophysics. Proving the correctness of these algorithms is vital in order to boost confidence in them. By specifying the algorithms formally in a theorem prover such as Isabelle, it is hoped that rigorous proofs showing their correctness will be obtained. This paper outlines our current framework for reasoning about geometric algorithms in Isabelle. It focuses on our case study of the convex hull problem and shows how Hoare logic can be used to prove the correctness of such algorithms.

Pp. 73-112

Experimental Studies

Adam Niesłony; Ewald Macha

Algorithms for solving geometric problems are widely used in many scientific disciplines. Applications range from computer vision and robotics to molecular biology and astrophysics. Proving the correctness of these algorithms is vital in order to boost confidence in them. By specifying the algorithms formally in a theorem prover such as Isabelle, it is hoped that rigorous proofs showing their correctness will be obtained. This paper outlines our current framework for reasoning about geometric algorithms in Isabelle. It focuses on our case study of the convex hull problem and shows how Hoare logic can be used to prove the correctness of such algorithms.

Pp. 113-133

Conclusions

Adam Niesłony; Ewald Macha

Algorithms for solving geometric problems are widely used in many scientific disciplines. Applications range from computer vision and robotics to molecular biology and astrophysics. Proving the correctness of these algorithms is vital in order to boost confidence in them. By specifying the algorithms formally in a theorem prover such as Isabelle, it is hoped that rigorous proofs showing their correctness will be obtained. This paper outlines our current framework for reasoning about geometric algorithms in Isabelle. It focuses on our case study of the convex hull problem and shows how Hoare logic can be used to prove the correctness of such algorithms.

Pp. 135-136