Catálogo de publicaciones - libros
Spectral Method in Multiaxial Random Fatigue
Adam Niesłony Ewald Macha
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2007 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-73822-0
ISBN electrónico
978-3-540-73823-7
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2007
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2007
Cobertura temática
Tabla de contenidos
Introduction
Adam Niesłony; Ewald Macha
Algorithms for solving geometric problems are widely used in many scientific disciplines. Applications range from computer vision and robotics to molecular biology and astrophysics. Proving the correctness of these algorithms is vital in order to boost confidence in them. By specifying the algorithms formally in a theorem prover such as Isabelle, it is hoped that rigorous proofs showing their correctness will be obtained. This paper outlines our current framework for reasoning about geometric algorithms in Isabelle. It focuses on our case study of the convex hull problem and shows how Hoare logic can be used to prove the correctness of such algorithms.
Pp. 3-5
Spectral Methods for Fatigue Description
Adam Niesłony; Ewald Macha
Algorithms for solving geometric problems are widely used in many scientific disciplines. Applications range from computer vision and robotics to molecular biology and astrophysics. Proving the correctness of these algorithms is vital in order to boost confidence in them. By specifying the algorithms formally in a theorem prover such as Isabelle, it is hoped that rigorous proofs showing their correctness will be obtained. This paper outlines our current framework for reasoning about geometric algorithms in Isabelle. It focuses on our case study of the convex hull problem and shows how Hoare logic can be used to prove the correctness of such algorithms.
Pp. 7-36
Theoretical Fundamentals
Adam Niesłony; Ewald Macha
Algorithms for solving geometric problems are widely used in many scientific disciplines. Applications range from computer vision and robotics to molecular biology and astrophysics. Proving the correctness of these algorithms is vital in order to boost confidence in them. By specifying the algorithms formally in a theorem prover such as Isabelle, it is hoped that rigorous proofs showing their correctness will be obtained. This paper outlines our current framework for reasoning about geometric algorithms in Isabelle. It focuses on our case study of the convex hull problem and shows how Hoare logic can be used to prove the correctness of such algorithms.
Pp. 37-66
Algorithm of Spectral Method for Evaluation of Fatigue Life
Adam Niesłony; Ewald Macha
Algorithms for solving geometric problems are widely used in many scientific disciplines. Applications range from computer vision and robotics to molecular biology and astrophysics. Proving the correctness of these algorithms is vital in order to boost confidence in them. By specifying the algorithms formally in a theorem prover such as Isabelle, it is hoped that rigorous proofs showing their correctness will be obtained. This paper outlines our current framework for reasoning about geometric algorithms in Isabelle. It focuses on our case study of the convex hull problem and shows how Hoare logic can be used to prove the correctness of such algorithms.
Pp. 67-71
Simulations
Adam Niesłony; Ewald Macha
Algorithms for solving geometric problems are widely used in many scientific disciplines. Applications range from computer vision and robotics to molecular biology and astrophysics. Proving the correctness of these algorithms is vital in order to boost confidence in them. By specifying the algorithms formally in a theorem prover such as Isabelle, it is hoped that rigorous proofs showing their correctness will be obtained. This paper outlines our current framework for reasoning about geometric algorithms in Isabelle. It focuses on our case study of the convex hull problem and shows how Hoare logic can be used to prove the correctness of such algorithms.
Pp. 73-112
Experimental Studies
Adam Niesłony; Ewald Macha
Algorithms for solving geometric problems are widely used in many scientific disciplines. Applications range from computer vision and robotics to molecular biology and astrophysics. Proving the correctness of these algorithms is vital in order to boost confidence in them. By specifying the algorithms formally in a theorem prover such as Isabelle, it is hoped that rigorous proofs showing their correctness will be obtained. This paper outlines our current framework for reasoning about geometric algorithms in Isabelle. It focuses on our case study of the convex hull problem and shows how Hoare logic can be used to prove the correctness of such algorithms.
Pp. 113-133
Conclusions
Adam Niesłony; Ewald Macha
Algorithms for solving geometric problems are widely used in many scientific disciplines. Applications range from computer vision and robotics to molecular biology and astrophysics. Proving the correctness of these algorithms is vital in order to boost confidence in them. By specifying the algorithms formally in a theorem prover such as Isabelle, it is hoped that rigorous proofs showing their correctness will be obtained. This paper outlines our current framework for reasoning about geometric algorithms in Isabelle. It focuses on our case study of the convex hull problem and shows how Hoare logic can be used to prove the correctness of such algorithms.
Pp. 135-136