Catálogo de publicaciones - libros
An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Space
Martin Schlichenmaier
Second Edition.
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2007 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-71174-2
ISBN electrónico
978-3-540-71175-9
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2007
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2007
Cobertura temática
Tabla de contenidos
Manifolds
Martin Schlichenmaier
We study abstract interpretations of a fixpoint protoderivation semantics defining the maximal derivations of a transitional semantics of context-free grammars akin to pushdown automata. The result is a hierarchy of bottom-up or top-down semantics refining the classical equational and derivational language semantics and including Knuth grammar problem, classical grammar flow analysis algorithms, and parsing algorithms.
Pp. 7-15
Topology of Riemann Surfaces
Martin Schlichenmaier
We study abstract interpretations of a fixpoint protoderivation semantics defining the maximal derivations of a transitional semantics of context-free grammars akin to pushdown automata. The result is a hierarchy of bottom-up or top-down semantics refining the classical equational and derivational language semantics and including Knuth grammar problem, classical grammar flow analysis algorithms, and parsing algorithms.
Pp. 17-30
Analytic Structure
Martin Schlichenmaier
We study abstract interpretations of a fixpoint protoderivation semantics defining the maximal derivations of a transitional semantics of context-free grammars akin to pushdown automata. The result is a hierarchy of bottom-up or top-down semantics refining the classical equational and derivational language semantics and including Knuth grammar problem, classical grammar flow analysis algorithms, and parsing algorithms.
Pp. 33-41
Diffierentials and Integration
Martin Schlichenmaier
We study abstract interpretations of a fixpoint protoderivation semantics defining the maximal derivations of a transitional semantics of context-free grammars akin to pushdown automata. The result is a hierarchy of bottom-up or top-down semantics refining the classical equational and derivational language semantics and including Knuth grammar problem, classical grammar flow analysis algorithms, and parsing algorithms.
Pp. 43-52
Tori and Jacobians
Martin Schlichenmaier
We study abstract interpretations of a fixpoint protoderivation semantics defining the maximal derivations of a transitional semantics of context-free grammars akin to pushdown automata. The result is a hierarchy of bottom-up or top-down semantics refining the classical equational and derivational language semantics and including Knuth grammar problem, classical grammar flow analysis algorithms, and parsing algorithms.
Pp. 53-60
Projective Varieties
Martin Schlichenmaier
We study abstract interpretations of a fixpoint protoderivation semantics defining the maximal derivations of a transitional semantics of context-free grammars akin to pushdown automata. The result is a hierarchy of bottom-up or top-down semantics refining the classical equational and derivational language semantics and including Knuth grammar problem, classical grammar flow analysis algorithms, and parsing algorithms.
Pp. 61-70
Moduli Spaces of Curves
Martin Schlichenmaier
We study abstract interpretations of a fixpoint protoderivation semantics defining the maximal derivations of a transitional semantics of context-free grammars akin to pushdown automata. The result is a hierarchy of bottom-up or top-down semantics refining the classical equational and derivational language semantics and including Knuth grammar problem, classical grammar flow analysis algorithms, and parsing algorithms.
Pp. 71-86
Vector Bundles, Sheaves and Cohomology
Martin Schlichenmaier
We study abstract interpretations of a fixpoint protoderivation semantics defining the maximal derivations of a transitional semantics of context-free grammars akin to pushdown automata. The result is a hierarchy of bottom-up or top-down semantics refining the classical equational and derivational language semantics and including Knuth grammar problem, classical grammar flow analysis algorithms, and parsing algorithms.
Pp. 87-101
The Theorem of Riemann–Roch for Line Bundles
Martin Schlichenmaier
We study abstract interpretations of a fixpoint protoderivation semantics defining the maximal derivations of a transitional semantics of context-free grammars akin to pushdown automata. The result is a hierarchy of bottom-up or top-down semantics refining the classical equational and derivational language semantics and including Knuth grammar problem, classical grammar flow analysis algorithms, and parsing algorithms.
Pp. 103-118
The Mumford Isomorphism on the Moduli Space
Martin Schlichenmaier
We study abstract interpretations of a fixpoint protoderivation semantics defining the maximal derivations of a transitional semantics of context-free grammars akin to pushdown automata. The result is a hierarchy of bottom-up or top-down semantics refining the classical equational and derivational language semantics and including Knuth grammar problem, classical grammar flow analysis algorithms, and parsing algorithms.
Pp. 119-132