Catálogo de publicaciones - tesis
Título de Acceso Abierto
Regulación transcripcional de las subunidades de la proteína quinasa A de Saccharomyces cerevisiae
María Constanza Pautasso Silvia Graciela Rossi
publishedVersion.
Resumen/Descripción – provisto por el repositorio digital
Las células deben mantener un específico y delicado balance de su fisiología interna para el crecimiento y funcionamiento óptimos. El mantenimiento de este balance interno es crítico y variaciones del ambiente pueden resultar en una variedad de perturbaciones celulares que pueden romper el equilibrio interno celular, provocando de esta forma una interrupción de flujos metabólicos, desestabilización de estructuras celulares y perturbación de gradientes químicos, entre otros, que conducen a una inestabilidad general. Las células deben ser capaces de proteger y mantener la homeostasis interna frente a la variabilidad de las condiciones externas. La levadura Saccharomyces cerevisiae, ha evolucionado sistemas de sensado y redes de señalización complejas para responder eficientemente a las variaciones repentinas y frecuentes en el ambiente externo, como son fluctuaciones de temperatura, osmolaridad, acidez del ambiente, presencia de tóxicos, y largos períodos de hambreado nutricional. Dichos mecanismos, le permiten controlar la expresión de numerosos genes que están involucrados en la división celular, caminos metabólicos, resistencia a estrés y diferenciación celular. En Saccharomyces cerevisiae una gran variedad de los procesos celulares es controlada por la vía de la proteína kinasa A dependiente de cAMP (PKA), la que consiste en un heterotetrámero formado por dos subunidades catalíticas (C) codificadas por los genes TPK1, TPK2 y TPK3, y por dos subunidades regulatorias (R) codificadas por un único gen BCY1. Entre los estímulos mejor descriptos frente a los que la PKA se activa se encuentra la presencia de fuentes de carbono fermentables en el medio. Por el contrario, tanto para el cambio a metabolismo respiratorio que permite el consumo de fuentes de carbono no fermentables, como para dar una respuesta que permita la adaptación a situaciones de estrés térmico y osmótico, es necesario que la PKA se inactive. La especificidad de la respuesta frente a distintos estímulos es determinada por varios factores como son la concentración local de cAMP, los niveles de expresión de la quinasa y del sustrato, la presencia o ausencia de proteínas de anclaje que limitan la interacción de la quinasa con su sustrato y la secuencia alrededor del sitio de fosforilación de éste. La regulación de los niveles de expresión génica de las subunidades de PKA en Saccharomyces cerevisiae ha sido poco estudiada hasta el momento. En este trabajo se buscó caracterizar la actividad transcripcional de los promotores de los genes de las subunidades de PKA en distintas condiciones de crecimiento, así como identificar globalmente vías metabólicas y específicamente proteínas de importancia en la regulación. En primer lugar, mediante la técnica de genes reporteros y la medición de los niveles de mRNA, se determinó que los niveles de actividad de los promotores de los genes de PKA son diferentes a lo largo del crecimiento, ordenándose de mayor a menor de la siguiente forma: TPK1, TPK2, TPK3 y BCY1. Empleando mutantes que exhiben una actividad de PKA desregulada o nula, se describió el comportamiento autorregulatorio negativo isoforma-dependiente de la enzima sobre los niveles de expresión de sus propios genes. En condiciones de estrés térmico y salino, sólo el promotor TPK1 es activado, y mediante el empleo de cepas mutantes de deleción de proteínas involucradas en la vía de respuesta al estrés térmico, se determinó que la quinasa Rim15, y no la quinasa Yak1, interviene en su regulación. Más aún, Msn2/4, Gis1 y Sok2, factores de transcripción río abajo de ambas quinasas, participan en la activación del promotor TPK1, y su reclutamiento fue confirmado por experimentos de ChIP. Por otra parte, el estudio de la respuesta de los promotores al crecimiento en glicerol (metabolismo oxidativo), indicó un marcado incremento de la actividad, respecto al crecimiento en glucosa (metabolismo fermentativo). El uso de mutantes de deleción de genes que codifican para proteínas que participan en la transducción de la señal de fuente de carbono permitió identificar al factor de transcripción Mig1 como represor de los promotores TPK1 y TPK2; a Mig2 como represor de los promotores de TPK2 y BCY1, y a Mig3 como represor del promotor de BCY1. Se corroboró la presencia de Mig1 en el promotor TPK1 transcripcionalmente activo mediante ensayos de ChIP. La quinasa Snf1y sus efectores río abajo, los factores de transcripción Cat8 y Sip4, que cumplen un rol importante en la respuesta al hambreado de glucosa, regulan la actividad de los cuatro promotores en presencia de esta fuente de carbono. Teniendo en cuenta que la PKA está implicada en numerosas vías de transducción de señales, y habiendo corroborado que las vías de respuesta a estrés y a fuente de carbono regulan la actividad de los promotores de los genes de sus subunidades, se realizó un estudio a nivel genómico a través del empleo de tecnología robótica (técnica Reporter-Synthetic Genetic Array), con el objetivo de identificar de forma global nuevos reguladores de la transcripción. Este estudio se llevó a cabo con células crecidas en fuente de carbono fermentable. Este análisis masivo permitió identificar distintas vías que regulan diferencialmente la actividad de los cuatro promotores de las subunidades de PKA. Los reguladores identificados fueron clasificados según la base Gene Ontology para determinar el enriquecimiento en distintas categorías. Distintos genes asociados a las categorías de transcripción, función mitocondrial, función vacuolar y metabolismo de fosfato afectan la actividad de los cuatro promotores. A su vez se identificaron también genes pertenecientes a distintas categorías regulatorias que no son compartidas por los promotores, como metabolismo de lípidos, que afecta la transcripción de TPK1, TPK2 y TPK3. Fue llamativo además, que dentro de una misma categoría que surgió como reguladora de los cuatro promotores, los genes identificados son diferentes para cada subunidad de PKA. Del análisis surgieron también los metabolitos inositol, polifosfatos de inositol, colina y fosfato como señales que regulan la transcripción de los genes de las subunidades de PKA. De este trabajo se desprende que muchos de los blancos de fosforilación conocidos de PKA que forman parte de estas rutas metabólicas, juegan a su vez un rol en la regulación transcripcional de sus subunidades, sugiriendo la posibilidad de una regulación recíproca en la que PKA coordinaría diferentes vías de señalización y estos procesos a su vez regularían la expresión de la quinasa. Este concepto está además en relación con los resultados de la primera parte del trabajo, que muestran una regulación inhibitoria de los promotores de PKA por la propia actividad de la quinasa. Como conclusión general se puede afirmar que la regulación diferencial de la expresión de las subunidades que conforman la quinasa dependiente de cAMP juega un rol importante en la determinación de la especificidad de la respuesta en el camino de señalización cAMP-PKA.Palabras clave – provistas por el repositorio digital
No disponibles.
Disponibilidad
| Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
|---|---|---|---|---|
| No requiere | 2015 | Biblioteca Digital (FCEN-UBA) (SNRD) |
|
Información
Tipo de recurso:
tesis
Idiomas de la publicación
- español castellano
País de edición
Argentina
Fecha de publicación
2015-07-07
Información sobre licencias CC