Catálogo de publicaciones - tesis

Compartir en
redes sociales


Título de Acceso Abierto

Modelos numéricos para redes fluviales

Pablo Miguel Jacovkis Juan Pedro Milaszewicz

publishedVersion.

Resumen/Descripción – provisto por el repositorio digital
En este trabajo se resuelven numéricamente por métodos implícitos en diferencias finitas las ecuaciones hiperbólicas casilineales de Saint-Venant del flujo no estacionario unidimensional gradualmente variado de aguas poco profundas sobre superficiales y fondo fijo para sistemas fluviales de tipo arborescente (cuencas) y deltaico en que tienen que considerar las condiciones de compatibilidad de los puntos de confluencia (condiciones de Stoker) Linealizando y discretizando según el método de Preissmann demostraremos que el problema se puede reducir , en cada intervalo temporal de cálculo, a la resolución de un sistema lineal de la forma Ax=b, donde la matriz A tiene una estructura especial rala que facilita su solución: A y b dependen del intervalo temporal, no así la estructura de ceros de A. Dicha estructura es mas complicada en el caso deltaico que en el arborescente, por lo cual es conveniente tratarlos por separado. Se describen además diversos experimentos numéricos realizados, tanto para el caso de de sistemas fluviales arborescentes como de redes complejas deltaicas, incluyendo comparaciones con soluciones analíticas conocidas.
Palabras clave – provistas por el repositorio digital

Modelos numéricos; redes fluviales

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No requiere 1988 Biblioteca Digital (FCEN-UBA) (SNRD) acceso abierto

Información

Tipo de recurso:

tesis

Idiomas de la publicación

  • español castellano

País de edición

Argentina

Fecha de publicación

Información sobre licencias CC

https://creativecommons.org/licenses/by/2.5/ar/