Catálogo de publicaciones - tesis

Compartir en
redes sociales


Título de Acceso Abierto

Geometría en espacios homogéneos de grupos unitarios

Eduardo Hernán Chiumiento Esteban Andruchow Demetrio Stojanoff

acceptedVersion.

Resumen/Descripción – provisto por el repositorio digital
En este trabajo estamos interesados en propiedades geométricas de espacios homogéneos de grupos unitarios. Estos espacios homogéneos, construidos a partir de elementos de la teoría de operadores, son variedades de dimensión infinita donde definimos una métrica de Finsler natural. Principalmente, estudiaremos aspectos concernientes a la geometría métrica de estos espacios homogéneos, como la existencia y unicidad de curvas minimales o propiedades de la distancia rectificable, y en menor medida, estudiaremos aspectos diferenciales, como la presencia de una estructura reductiva. En variedades Riemannianas o de Finsler de dimensión finita, o más aún, en espacios métricos de longitud localmente compactos, el Teorema de Hopf-Rinow relaciona la existencia de curvas de longitud minimal con la completitud en la distancia rectificable. Dado que este teorema no es válido en variedades de dimensión infinita, resulta necesario desarrollar técnicas ad-hoc en cada ejemplo para hallar curvas minimales o analizar la completitud. En particular, en los espacios homogéneos tratados aquí, este tipo de cuestiones métricas generan diversos problemas, interesantes por sí mismos en la teoría de operadores y que permiten observar como funciona o falla la teoría finito dimensional de variedades. Estudiaremos dos tipos de espacios homogéneos. El primero, dentro de un marco general, donde la métrica de Finsler está inducida por la traza finita de un álgebra, y el segundo es un ejemplo concreto acerca de isometrías parciales, donde la métrica proviene de la norma de ideales de Banach.
Palabras clave – provistas por el repositorio digital

Ciencias Exactas; Matemática; Matemáticas; Álgebra de operador; Espacios de Hilbert; Álgebras y espacios Banach

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No requiere 2009 SEDICI: Repositorio Institucional de la UNLP (SNRD) acceso abierto

Información

Tipo de recurso:

tesis

Idiomas de la publicación

  • español castellano

País de edición

Argentina

Fecha de publicación

Información sobre licencias CC

https://creativecommons.org/licenses/by-nc-sa/4.0/

Cobertura temática