Catálogo de publicaciones - tesis
Título de Acceso Abierto
Geometría en espacios homogéneos de grupos unitarios
Eduardo Hernán Chiumiento Esteban Andruchow Demetrio Stojanoff
acceptedVersion.
Resumen/Descripción – provisto por el repositorio digital
En este trabajo estamos interesados en propiedades geométricas de espacios homogéneos de grupos unitarios. Estos espacios homogéneos, construidos a partir de elementos de la teoría de operadores, son variedades de dimensión infinita donde definimos una métrica de Finsler natural. Principalmente, estudiaremos aspectos concernientes a la geometría métrica de estos espacios homogéneos, como la existencia y unicidad de curvas minimales o propiedades de la distancia rectificable, y en menor medida, estudiaremos aspectos diferenciales, como la presencia de una estructura reductiva. En variedades Riemannianas o de Finsler de dimensión finita, o más aún, en espacios métricos de longitud localmente compactos, el Teorema de Hopf-Rinow relaciona la existencia de curvas de longitud minimal con la completitud en la distancia rectificable. Dado que este teorema no es válido en variedades de dimensión infinita, resulta necesario desarrollar técnicas ad-hoc en cada ejemplo para hallar curvas minimales o analizar la completitud. En particular, en los espacios homogéneos tratados aquí, este tipo de cuestiones métricas generan diversos problemas, interesantes por sí mismos en la teoría de operadores y que permiten observar como funciona o falla la teoría finito dimensional de variedades. Estudiaremos dos tipos de espacios homogéneos. El primero, dentro de un marco general, donde la métrica de Finsler está inducida por la traza finita de un álgebra, y el segundo es un ejemplo concreto acerca de isometrías parciales, donde la métrica proviene de la norma de ideales de Banach.Palabras clave – provistas por el repositorio digital
Ciencias Exactas; Matemática; Matemáticas; Álgebra de operador; Espacios de Hilbert; Álgebras y espacios Banach
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No requiere | 2009 | SEDICI: Repositorio Institucional de la UNLP (SNRD) |
Información
Tipo de recurso:
tesis
Idiomas de la publicación
- español castellano
País de edición
Argentina
Fecha de publicación
2009
Información sobre licencias CC