Catálogo de publicaciones - tesis

Compartir en
redes sociales


Título de Acceso Abierto

Estructura métrica y diferencial del conjunto de operadores autoadjuntos en un espacio de Hilbert

Guillermina Fongi Alejandra Maestripieri

publishedVersion.

Resumen/Descripción – provisto por el repositorio digital
En este trabajo estudiamos aspectos métricos y geométricos del conjunto de operadores autoadjuntos en un espacio de Hilbert H. Extendemos la relación de equivalencia definida por A. C. Thompson en un cono convexo de un espacio de Banach, al conjunto de operadores autoadjuntos. Definimos una métrica completa en cada clase de equivalencia o componente de Thompson, que resulta compatible con la estructura diferencial de la componente. Estudiamos además la órbita de congruencia de un operador autoadjunto a. Describimos la órbita de a en términos de su descomposición polar y de su descomposición positiva ortogonal. Si a es de rango cerrado, dotamos a la órbita de a de una estructura de variedad diferencial. Finalmente, estudiamos descomposiciones de operadores autoadjuntos como diferencia de dos operadores positivos de manera que el ángulo mínimo entre sus rangos sea positivo, que llamamos descomposiciones positivas. Mostramos que las descomposiciones positivas de un operador autoadjunto a están relacionadas con las descomposiciones canónicas del espacio (H, menor , mayor a), donde menor , mayor a es una métrica indefinida asociada al operador a. Como aplicación, caracterizamos la órbita de congruencia de a en términos de sus descomposiciones positivas.
Palabras clave – provistas por el repositorio digital

OPERADORES AUTOADJUNTOS; METRICA DE THOMPSON; GEOMETRIA DIFERENCIAL; CONGRUENCIA DE OPERADORES; METRICA INDEFINIDA; SELFADJOINT OPERATORS; THOMPSON PART METRIC; DIFFERENTIAL GEOMETRY; CONGRUENCE OF OPERATORS; INDEFINITE METRIC; HOMPSON PART METRIC

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No requiere 2010 Biblioteca Digital (FCEN-UBA) (SNRD) acceso abierto

Información

Tipo de recurso:

tesis

Idiomas de la publicación

  • español castellano

País de edición

Argentina

Fecha de publicación

Información sobre licencias CC

https://creativecommons.org/licenses/by/2.5/ar/

Cobertura temática