Catálogo de publicaciones - libros
High-Dynamic-Range (HDR) Vision
Bernd Hoefflinger (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2007 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-44432-9
ISBN electrónico
978-3-540-44433-6
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2007
Información sobre derechos de publicación
© Springer Berlin Heidelberg 2007
Cobertura temática
Tabla de contenidos
The Eye and High-Dynamic-Range Vision
Bernd Hoefflinger (eds.)
The vibrational transitions discussed in Chap. 6 occur by absorption of a photon whose energy matches a vibrational energy spacing, . Vibrational or rotational transitions also can occur when a molecule scatters light of higher frequencies; this is the phenomenon of . Raman scattering is one of a group of two-photon processes in which one photon is absorbed and another is emitted essentially simultaneously. Figure 12.1 illustrates the main possibilities. (Fig. 12.1, transition A) is an , in which there is no net transfer of energy between the molecule and the radiation field: the incident and emitted photons have the same energy. Raman scattering is an process in which the incident and departing photons differ in energy and the molecule is either promoted to a higher vibrational or rotational level of the ground electronic state, or demoted to a lower level. Raman transitions in which the molecule gains vibrational or rotational energy, called Raman scattering (Fig. 12.1, transition B), usually predominate over transitions in which energy is lost ( Raman scattering; Fig. 12.1, transition C) because resting molecules populate mainly the lowest levels of any vibrational modes with > . The strength of anti-Stokes scattering increases with temperature, and the ratio of anti-Stokes to Stokes scattering provides away to measure the effective temperature of amolecule. Both Stokes and anti-Stokes Raman scattering increase greatly in strength if the incident light falls within a molecular absorption band (Fig. 12.1, transition D). The scattering then is termed scattering.
Pp. 1-12
The High-Dynamic-Range Sensor
Verena Schneider
The vibrational transitions discussed in Chap. 6 occur by absorption of a photon whose energy matches a vibrational energy spacing, . Vibrational or rotational transitions also can occur when a molecule scatters light of higher frequencies; this is the phenomenon of . Raman scattering is one of a group of two-photon processes in which one photon is absorbed and another is emitted essentially simultaneously. Figure 12.1 illustrates the main possibilities. (Fig. 12.1, transition A) is an , in which there is no net transfer of energy between the molecule and the radiation field: the incident and emitted photons have the same energy. Raman scattering is an process in which the incident and departing photons differ in energy and the molecule is either promoted to a higher vibrational or rotational level of the ground electronic state, or demoted to a lower level. Raman transitions in which the molecule gains vibrational or rotational energy, called Raman scattering (Fig. 12.1, transition B), usually predominate over transitions in which energy is lost ( Raman scattering; Fig. 12.1, transition C) because resting molecules populate mainly the lowest levels of any vibrational modes with > . The strength of anti-Stokes scattering increases with temperature, and the ratio of anti-Stokes to Stokes scattering provides away to measure the effective temperature of amolecule. Both Stokes and anti-Stokes Raman scattering increase greatly in strength if the incident light falls within a molecular absorption band (Fig. 12.1, transition D). The scattering then is termed scattering.
Pp. 13-56
HDR Image Noise
Bernd Hoefflinger (eds.)
The vibrational transitions discussed in Chap. 6 occur by absorption of a photon whose energy matches a vibrational energy spacing, . Vibrational or rotational transitions also can occur when a molecule scatters light of higher frequencies; this is the phenomenon of . Raman scattering is one of a group of two-photon processes in which one photon is absorbed and another is emitted essentially simultaneously. Figure 12.1 illustrates the main possibilities. (Fig. 12.1, transition A) is an , in which there is no net transfer of energy between the molecule and the radiation field: the incident and emitted photons have the same energy. Raman scattering is an process in which the incident and departing photons differ in energy and the molecule is either promoted to a higher vibrational or rotational level of the ground electronic state, or demoted to a lower level. Raman transitions in which the molecule gains vibrational or rotational energy, called Raman scattering (Fig. 12.1, transition B), usually predominate over transitions in which energy is lost ( Raman scattering; Fig. 12.1, transition C) because resting molecules populate mainly the lowest levels of any vibrational modes with > . The strength of anti-Stokes scattering increases with temperature, and the ratio of anti-Stokes to Stokes scattering provides away to measure the effective temperature of amolecule. Both Stokes and anti-Stokes Raman scattering increase greatly in strength if the incident light falls within a molecular absorption band (Fig. 12.1, transition D). The scattering then is termed scattering.
Pp. 57-63
High-Dynamic-Range Contrast and Color Management
Bernd Hoefflinger (eds.)
The vibrational transitions discussed in Chap. 6 occur by absorption of a photon whose energy matches a vibrational energy spacing, . Vibrational or rotational transitions also can occur when a molecule scatters light of higher frequencies; this is the phenomenon of . Raman scattering is one of a group of two-photon processes in which one photon is absorbed and another is emitted essentially simultaneously. Figure 12.1 illustrates the main possibilities. (Fig. 12.1, transition A) is an , in which there is no net transfer of energy between the molecule and the radiation field: the incident and emitted photons have the same energy. Raman scattering is an process in which the incident and departing photons differ in energy and the molecule is either promoted to a higher vibrational or rotational level of the ground electronic state, or demoted to a lower level. Raman transitions in which the molecule gains vibrational or rotational energy, called Raman scattering (Fig. 12.1, transition B), usually predominate over transitions in which energy is lost ( Raman scattering; Fig. 12.1, transition C) because resting molecules populate mainly the lowest levels of any vibrational modes with > . The strength of anti-Stokes scattering increases with temperature, and the ratio of anti-Stokes to Stokes scattering provides away to measure the effective temperature of amolecule. Both Stokes and anti-Stokes Raman scattering increase greatly in strength if the incident light falls within a molecular absorption band (Fig. 12.1, transition D). The scattering then is termed scattering.
Pp. 65-71
HDR Video Cameras
Markus Strobel; Volker Gengenbach
The vibrational transitions discussed in Chap. 6 occur by absorption of a photon whose energy matches a vibrational energy spacing, . Vibrational or rotational transitions also can occur when a molecule scatters light of higher frequencies; this is the phenomenon of . Raman scattering is one of a group of two-photon processes in which one photon is absorbed and another is emitted essentially simultaneously. Figure 12.1 illustrates the main possibilities. (Fig. 12.1, transition A) is an , in which there is no net transfer of energy between the molecule and the radiation field: the incident and emitted photons have the same energy. Raman scattering is an process in which the incident and departing photons differ in energy and the molecule is either promoted to a higher vibrational or rotational level of the ground electronic state, or demoted to a lower level. Raman transitions in which the molecule gains vibrational or rotational energy, called Raman scattering (Fig. 12.1, transition B), usually predominate over transitions in which energy is lost ( Raman scattering; Fig. 12.1, transition C) because resting molecules populate mainly the lowest levels of any vibrational modes with > . The strength of anti-Stokes scattering increases with temperature, and the ratio of anti-Stokes to Stokes scattering provides away to measure the effective temperature of amolecule. Both Stokes and anti-Stokes Raman scattering increase greatly in strength if the incident light falls within a molecular absorption band (Fig. 12.1, transition D). The scattering then is termed scattering.
Pp. 73-97
Lenses for HDR Imaging
Hans-Joerg Schoenherr
The vibrational transitions discussed in Chap. 6 occur by absorption of a photon whose energy matches a vibrational energy spacing, . Vibrational or rotational transitions also can occur when a molecule scatters light of higher frequencies; this is the phenomenon of . Raman scattering is one of a group of two-photon processes in which one photon is absorbed and another is emitted essentially simultaneously. Figure 12.1 illustrates the main possibilities. (Fig. 12.1, transition A) is an , in which there is no net transfer of energy between the molecule and the radiation field: the incident and emitted photons have the same energy. Raman scattering is an process in which the incident and departing photons differ in energy and the molecule is either promoted to a higher vibrational or rotational level of the ground electronic state, or demoted to a lower level. Raman transitions in which the molecule gains vibrational or rotational energy, called Raman scattering (Fig. 12.1, transition B), usually predominate over transitions in which energy is lost ( Raman scattering; Fig. 12.1, transition C) because resting molecules populate mainly the lowest levels of any vibrational modes with > . The strength of anti-Stokes scattering increases with temperature, and the ratio of anti-Stokes to Stokes scattering provides away to measure the effective temperature of amolecule. Both Stokes and anti-Stokes Raman scattering increase greatly in strength if the incident light falls within a molecular absorption band (Fig. 12.1, transition D). The scattering then is termed scattering.
Pp. 99-105
HDRC Cameras for High-Speed Machine Vision
Bela Michael Rohrbacher; Michael Raasch; Roman Louban
The vibrational transitions discussed in Chap. 6 occur by absorption of a photon whose energy matches a vibrational energy spacing, . Vibrational or rotational transitions also can occur when a molecule scatters light of higher frequencies; this is the phenomenon of . Raman scattering is one of a group of two-photon processes in which one photon is absorbed and another is emitted essentially simultaneously. Figure 12.1 illustrates the main possibilities. (Fig. 12.1, transition A) is an , in which there is no net transfer of energy between the molecule and the radiation field: the incident and emitted photons have the same energy. Raman scattering is an process in which the incident and departing photons differ in energy and the molecule is either promoted to a higher vibrational or rotational level of the ground electronic state, or demoted to a lower level. Raman transitions in which the molecule gains vibrational or rotational energy, called Raman scattering (Fig. 12.1, transition B), usually predominate over transitions in which energy is lost ( Raman scattering; Fig. 12.1, transition C) because resting molecules populate mainly the lowest levels of any vibrational modes with > . The strength of anti-Stokes scattering increases with temperature, and the ratio of anti-Stokes to Stokes scattering provides away to measure the effective temperature of amolecule. Both Stokes and anti-Stokes Raman scattering increase greatly in strength if the incident light falls within a molecular absorption band (Fig. 12.1, transition D). The scattering then is termed scattering.
Pp. 107-121
HDR Vision for Driver Assistance
Peter M. Knoll
The vibrational transitions discussed in Chap. 6 occur by absorption of a photon whose energy matches a vibrational energy spacing, . Vibrational or rotational transitions also can occur when a molecule scatters light of higher frequencies; this is the phenomenon of . Raman scattering is one of a group of two-photon processes in which one photon is absorbed and another is emitted essentially simultaneously. Figure 12.1 illustrates the main possibilities. (Fig. 12.1, transition A) is an , in which there is no net transfer of energy between the molecule and the radiation field: the incident and emitted photons have the same energy. Raman scattering is an process in which the incident and departing photons differ in energy and the molecule is either promoted to a higher vibrational or rotational level of the ground electronic state, or demoted to a lower level. Raman transitions in which the molecule gains vibrational or rotational energy, called Raman scattering (Fig. 12.1, transition B), usually predominate over transitions in which energy is lost ( Raman scattering; Fig. 12.1, transition C) because resting molecules populate mainly the lowest levels of any vibrational modes with > . The strength of anti-Stokes scattering increases with temperature, and the ratio of anti-Stokes to Stokes scattering provides away to measure the effective temperature of amolecule. Both Stokes and anti-Stokes Raman scattering increase greatly in strength if the incident light falls within a molecular absorption band (Fig. 12.1, transition D). The scattering then is termed scattering.
Pp. 123-136
Miniature HDRC Cameras for Endoscopy
Christine Harendt; Klaus-Martin Irion
The vibrational transitions discussed in Chap. 6 occur by absorption of a photon whose energy matches a vibrational energy spacing, . Vibrational or rotational transitions also can occur when a molecule scatters light of higher frequencies; this is the phenomenon of . Raman scattering is one of a group of two-photon processes in which one photon is absorbed and another is emitted essentially simultaneously. Figure 12.1 illustrates the main possibilities. (Fig. 12.1, transition A) is an , in which there is no net transfer of energy between the molecule and the radiation field: the incident and emitted photons have the same energy. Raman scattering is an process in which the incident and departing photons differ in energy and the molecule is either promoted to a higher vibrational or rotational level of the ground electronic state, or demoted to a lower level. Raman transitions in which the molecule gains vibrational or rotational energy, called Raman scattering (Fig. 12.1, transition B), usually predominate over transitions in which energy is lost ( Raman scattering; Fig. 12.1, transition C) because resting molecules populate mainly the lowest levels of any vibrational modes with > . The strength of anti-Stokes scattering increases with temperature, and the ratio of anti-Stokes to Stokes scattering provides away to measure the effective temperature of amolecule. Both Stokes and anti-Stokes Raman scattering increase greatly in strength if the incident light falls within a molecular absorption band (Fig. 12.1, transition D). The scattering then is termed scattering.
Pp. 137-139
HDR Sub-retinal Implant for the Vision Impaired
Heinz-Gerd Graf; Alexander Dollberg; Jan-Dirk Schulze Spüntrup; Karsten Warkentin
The vibrational transitions discussed in Chap. 6 occur by absorption of a photon whose energy matches a vibrational energy spacing, . Vibrational or rotational transitions also can occur when a molecule scatters light of higher frequencies; this is the phenomenon of . Raman scattering is one of a group of two-photon processes in which one photon is absorbed and another is emitted essentially simultaneously. Figure 12.1 illustrates the main possibilities. (Fig. 12.1, transition A) is an , in which there is no net transfer of energy between the molecule and the radiation field: the incident and emitted photons have the same energy. Raman scattering is an process in which the incident and departing photons differ in energy and the molecule is either promoted to a higher vibrational or rotational level of the ground electronic state, or demoted to a lower level. Raman transitions in which the molecule gains vibrational or rotational energy, called Raman scattering (Fig. 12.1, transition B), usually predominate over transitions in which energy is lost ( Raman scattering; Fig. 12.1, transition C) because resting molecules populate mainly the lowest levels of any vibrational modes with > . The strength of anti-Stokes scattering increases with temperature, and the ratio of anti-Stokes to Stokes scattering provides away to measure the effective temperature of amolecule. Both Stokes and anti-Stokes Raman scattering increase greatly in strength if the incident light falls within a molecular absorption band (Fig. 12.1, transition D). The scattering then is termed scattering.
Pp. 141-146