Catálogo de publicaciones - libros

Compartir en
redes sociales


Monograph of the Urostyloidea (Ciliophora, Hypotricha)

Helmut Berger

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Invertebrates; Freshwater & Marine Ecology; Zoology; Animal Systematics/Taxonomy/Biogeography

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-4020-5272-9

ISBN electrónico

978-1-4020-5273-6

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer 2006

Cobertura temática

Tabla de contenidos

Helmut Berger

Massive data streams of positional updates become increasingly difficult to manage under limited memory resources, especially in terms of providing near real-time response to multiple continuous queries. In this paper, we consider online maintenance for spatiotemporal summaries of streaming positions in an aging-aware fashion, by gradually evicting older observations in favor of greater precision for the most recent portions of movement. Although several functions have been proposed for approximation of time series, we opt for a simple, yet quite efficient scheme that achieves contiguity along all retained stream pieces. To this end, we adapt an amnesic tree structure that effectively meets the requirements of time-decaying approximation while taking advantage of the succession inherent in positional updates. We further exemplify the significance of this scheme in two important cases: the first one refers to trajectory compression of individual objects; the other offers estimated aggregates of moving object locations across time. Both techniques are validated with comprehensive experiments, confirming their suitability in maintaining online concise synopses for moving objects.

Pp. 1-71

Urostyloidea

Helmut Berger

Massive data streams of positional updates become increasingly difficult to manage under limited memory resources, especially in terms of providing near real-time response to multiple continuous queries. In this paper, we consider online maintenance for spatiotemporal summaries of streaming positions in an aging-aware fashion, by gradually evicting older observations in favor of greater precision for the most recent portions of movement. Although several functions have been proposed for approximation of time series, we opt for a simple, yet quite efficient scheme that achieves contiguity along all retained stream pieces. To this end, we adapt an amnesic tree structure that effectively meets the requirements of time-decaying approximation while taking advantage of the succession inherent in positional updates. We further exemplify the significance of this scheme in two important cases: the first one refers to trajectory compression of individual objects; the other offers estimated aggregates of moving object locations across time. Both techniques are validated with comprehensive experiments, confirming their suitability in maintaining online concise synopses for moving objects.

Pp. 73-1168

Taxa of Unknown Position within the Urostyloidea

Helmut Berger

Massive data streams of positional updates become increasingly difficult to manage under limited memory resources, especially in terms of providing near real-time response to multiple continuous queries. In this paper, we consider online maintenance for spatiotemporal summaries of streaming positions in an aging-aware fashion, by gradually evicting older observations in favor of greater precision for the most recent portions of movement. Although several functions have been proposed for approximation of time series, we opt for a simple, yet quite efficient scheme that achieves contiguity along all retained stream pieces. To this end, we adapt an amnesic tree structure that effectively meets the requirements of time-decaying approximation while taking advantage of the succession inherent in positional updates. We further exemplify the significance of this scheme in two important cases: the first one refers to trajectory compression of individual objects; the other offers estimated aggregates of moving object locations across time. Both techniques are validated with comprehensive experiments, confirming their suitability in maintaining online concise synopses for moving objects.

Pp. 1169-1188

Supplement to the Oxytrichidae

Helmut Berger

Massive data streams of positional updates become increasingly difficult to manage under limited memory resources, especially in terms of providing near real-time response to multiple continuous queries. In this paper, we consider online maintenance for spatiotemporal summaries of streaming positions in an aging-aware fashion, by gradually evicting older observations in favor of greater precision for the most recent portions of movement. Although several functions have been proposed for approximation of time series, we opt for a simple, yet quite efficient scheme that achieves contiguity along all retained stream pieces. To this end, we adapt an amnesic tree structure that effectively meets the requirements of time-decaying approximation while taking advantage of the succession inherent in positional updates. We further exemplify the significance of this scheme in two important cases: the first one refers to trajectory compression of individual objects; the other offers estimated aggregates of moving object locations across time. Both techniques are validated with comprehensive experiments, confirming their suitability in maintaining online concise synopses for moving objects.

Pp. 1190-1207

Taxa not Considered

Helmut Berger

Massive data streams of positional updates become increasingly difficult to manage under limited memory resources, especially in terms of providing near real-time response to multiple continuous queries. In this paper, we consider online maintenance for spatiotemporal summaries of streaming positions in an aging-aware fashion, by gradually evicting older observations in favor of greater precision for the most recent portions of movement. Although several functions have been proposed for approximation of time series, we opt for a simple, yet quite efficient scheme that achieves contiguity along all retained stream pieces. To this end, we adapt an amnesic tree structure that effectively meets the requirements of time-decaying approximation while taking advantage of the succession inherent in positional updates. We further exemplify the significance of this scheme in two important cases: the first one refers to trajectory compression of individual objects; the other offers estimated aggregates of moving object locations across time. Both techniques are validated with comprehensive experiments, confirming their suitability in maintaining online concise synopses for moving objects.

Pp. 1208-1214

Addenda

Helmut Berger

Massive data streams of positional updates become increasingly difficult to manage under limited memory resources, especially in terms of providing near real-time response to multiple continuous queries. In this paper, we consider online maintenance for spatiotemporal summaries of streaming positions in an aging-aware fashion, by gradually evicting older observations in favor of greater precision for the most recent portions of movement. Although several functions have been proposed for approximation of time series, we opt for a simple, yet quite efficient scheme that achieves contiguity along all retained stream pieces. To this end, we adapt an amnesic tree structure that effectively meets the requirements of time-decaying approximation while taking advantage of the succession inherent in positional updates. We further exemplify the significance of this scheme in two important cases: the first one refers to trajectory compression of individual objects; the other offers estimated aggregates of moving object locations across time. Both techniques are validated with comprehensive experiments, confirming their suitability in maintaining online concise synopses for moving objects.

Pp. 1215-1221