Catálogo de publicaciones - libros
Monograph of the Urostyloidea (Ciliophora, Hypotricha)
Helmut Berger
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Invertebrates; Freshwater & Marine Ecology; Zoology; Animal Systematics/Taxonomy/Biogeography
Disponibilidad
| Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
|---|---|---|---|---|
| No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-1-4020-5272-9
ISBN electrónico
978-1-4020-5273-6
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Springer 2006
Cobertura temática
Tabla de contenidos
Helmut Berger
Massive data streams of positional updates become increasingly difficult to manage under limited memory resources, especially in terms of providing near real-time response to multiple continuous queries. In this paper, we consider online maintenance for spatiotemporal summaries of streaming positions in an aging-aware fashion, by gradually evicting older observations in favor of greater precision for the most recent portions of movement. Although several functions have been proposed for approximation of time series, we opt for a simple, yet quite efficient scheme that achieves contiguity along all retained stream pieces. To this end, we adapt an amnesic tree structure that effectively meets the requirements of time-decaying approximation while taking advantage of the succession inherent in positional updates. We further exemplify the significance of this scheme in two important cases: the first one refers to trajectory compression of individual objects; the other offers estimated aggregates of moving object locations across time. Both techniques are validated with comprehensive experiments, confirming their suitability in maintaining online concise synopses for moving objects.
Pp. 1-71
Urostyloidea
Helmut Berger
Massive data streams of positional updates become increasingly difficult to manage under limited memory resources, especially in terms of providing near real-time response to multiple continuous queries. In this paper, we consider online maintenance for spatiotemporal summaries of streaming positions in an aging-aware fashion, by gradually evicting older observations in favor of greater precision for the most recent portions of movement. Although several functions have been proposed for approximation of time series, we opt for a simple, yet quite efficient scheme that achieves contiguity along all retained stream pieces. To this end, we adapt an amnesic tree structure that effectively meets the requirements of time-decaying approximation while taking advantage of the succession inherent in positional updates. We further exemplify the significance of this scheme in two important cases: the first one refers to trajectory compression of individual objects; the other offers estimated aggregates of moving object locations across time. Both techniques are validated with comprehensive experiments, confirming their suitability in maintaining online concise synopses for moving objects.
Pp. 73-1168
Taxa of Unknown Position within the Urostyloidea
Helmut Berger
Massive data streams of positional updates become increasingly difficult to manage under limited memory resources, especially in terms of providing near real-time response to multiple continuous queries. In this paper, we consider online maintenance for spatiotemporal summaries of streaming positions in an aging-aware fashion, by gradually evicting older observations in favor of greater precision for the most recent portions of movement. Although several functions have been proposed for approximation of time series, we opt for a simple, yet quite efficient scheme that achieves contiguity along all retained stream pieces. To this end, we adapt an amnesic tree structure that effectively meets the requirements of time-decaying approximation while taking advantage of the succession inherent in positional updates. We further exemplify the significance of this scheme in two important cases: the first one refers to trajectory compression of individual objects; the other offers estimated aggregates of moving object locations across time. Both techniques are validated with comprehensive experiments, confirming their suitability in maintaining online concise synopses for moving objects.
Pp. 1169-1188
Supplement to the Oxytrichidae
Helmut Berger
Massive data streams of positional updates become increasingly difficult to manage under limited memory resources, especially in terms of providing near real-time response to multiple continuous queries. In this paper, we consider online maintenance for spatiotemporal summaries of streaming positions in an aging-aware fashion, by gradually evicting older observations in favor of greater precision for the most recent portions of movement. Although several functions have been proposed for approximation of time series, we opt for a simple, yet quite efficient scheme that achieves contiguity along all retained stream pieces. To this end, we adapt an amnesic tree structure that effectively meets the requirements of time-decaying approximation while taking advantage of the succession inherent in positional updates. We further exemplify the significance of this scheme in two important cases: the first one refers to trajectory compression of individual objects; the other offers estimated aggregates of moving object locations across time. Both techniques are validated with comprehensive experiments, confirming their suitability in maintaining online concise synopses for moving objects.
Pp. 1190-1207
Taxa not Considered
Helmut Berger
Massive data streams of positional updates become increasingly difficult to manage under limited memory resources, especially in terms of providing near real-time response to multiple continuous queries. In this paper, we consider online maintenance for spatiotemporal summaries of streaming positions in an aging-aware fashion, by gradually evicting older observations in favor of greater precision for the most recent portions of movement. Although several functions have been proposed for approximation of time series, we opt for a simple, yet quite efficient scheme that achieves contiguity along all retained stream pieces. To this end, we adapt an amnesic tree structure that effectively meets the requirements of time-decaying approximation while taking advantage of the succession inherent in positional updates. We further exemplify the significance of this scheme in two important cases: the first one refers to trajectory compression of individual objects; the other offers estimated aggregates of moving object locations across time. Both techniques are validated with comprehensive experiments, confirming their suitability in maintaining online concise synopses for moving objects.
Pp. 1208-1214
Addenda
Helmut Berger
Massive data streams of positional updates become increasingly difficult to manage under limited memory resources, especially in terms of providing near real-time response to multiple continuous queries. In this paper, we consider online maintenance for spatiotemporal summaries of streaming positions in an aging-aware fashion, by gradually evicting older observations in favor of greater precision for the most recent portions of movement. Although several functions have been proposed for approximation of time series, we opt for a simple, yet quite efficient scheme that achieves contiguity along all retained stream pieces. To this end, we adapt an amnesic tree structure that effectively meets the requirements of time-decaying approximation while taking advantage of the succession inherent in positional updates. We further exemplify the significance of this scheme in two important cases: the first one refers to trajectory compression of individual objects; the other offers estimated aggregates of moving object locations across time. Both techniques are validated with comprehensive experiments, confirming their suitability in maintaining online concise synopses for moving objects.
Pp. 1215-1221