Catálogo de publicaciones - libros
Product Lifecycle Management
Antti Saaksvuori Anselmi Immonen
Second Edition.
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
| Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
|---|---|---|---|---|
| No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-25731-8
ISBN electrónico
978-3-540-26906-9
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer Berlin · Heidelberg 2005
Cobertura temática
Tabla de contenidos
Introduction
Antti Saaksvuori; Anselmi Immonen
Cancer cell invasion necessitates the participation of host cells. One of the cell types that stimulates invasion of colon and other cancer cells is the myofibroblast, as evidenced from the histology of cancer and from coculture experiments. Cancer cells produce transforming growth factor-β (TGF-β) and TGF-β converts fibroblasts into pro-invasive myofibroblasts. In the in vitro system with human cancer cell lines and freshly isolated stromal cells, the pro-invasive activity of myofibroblasts is due to the combined action of Hepatocyte growth factor/scatter factor (HGF/SF) and tenascin-C, two molecules known to promote invasion in clinical tumors and their experimental surrogates. The myofibroblasts are themselves invasive and this activity is stimulated by TGF-β. N-cadherin is implicated in the invasion response of myofibroblasts. The question now is which of the multiple factors present in the tumor ecosystem is responsible for the pro-invasive switch that turns a benign tumor into a malignant one.
Pp. 1-6
Fundamentals
Antti Saaksvuori; Anselmi Immonen
Cancer cell invasion necessitates the participation of host cells. One of the cell types that stimulates invasion of colon and other cancer cells is the myofibroblast, as evidenced from the histology of cancer and from coculture experiments. Cancer cells produce transforming growth factor-β (TGF-β) and TGF-β converts fibroblasts into pro-invasive myofibroblasts. In the in vitro system with human cancer cell lines and freshly isolated stromal cells, the pro-invasive activity of myofibroblasts is due to the combined action of Hepatocyte growth factor/scatter factor (HGF/SF) and tenascin-C, two molecules known to promote invasion in clinical tumors and their experimental surrogates. The myofibroblasts are themselves invasive and this activity is stimulated by TGF-β. N-cadherin is implicated in the invasion response of myofibroblasts. The question now is which of the multiple factors present in the tumor ecosystem is responsible for the pro-invasive switch that turns a benign tumor into a malignant one.
Pp. 7-28
Product lifecycle management systems
Antti Saaksvuori; Anselmi Immonen
Cancer cell invasion necessitates the participation of host cells. One of the cell types that stimulates invasion of colon and other cancer cells is the myofibroblast, as evidenced from the histology of cancer and from coculture experiments. Cancer cells produce transforming growth factor-β (TGF-β) and TGF-β converts fibroblasts into pro-invasive myofibroblasts. In the in vitro system with human cancer cell lines and freshly isolated stromal cells, the pro-invasive activity of myofibroblasts is due to the combined action of Hepatocyte growth factor/scatter factor (HGF/SF) and tenascin-C, two molecules known to promote invasion in clinical tumors and their experimental surrogates. The myofibroblasts are themselves invasive and this activity is stimulated by TGF-β. N-cadherin is implicated in the invasion response of myofibroblasts. The question now is which of the multiple factors present in the tumor ecosystem is responsible for the pro-invasive switch that turns a benign tumor into a malignant one.
Pp. 29-48
Product structures
Antti Saaksvuori; Anselmi Immonen
Cancer cell invasion necessitates the participation of host cells. One of the cell types that stimulates invasion of colon and other cancer cells is the myofibroblast, as evidenced from the histology of cancer and from coculture experiments. Cancer cells produce transforming growth factor-β (TGF-β) and TGF-β converts fibroblasts into pro-invasive myofibroblasts. In the in vitro system with human cancer cell lines and freshly isolated stromal cells, the pro-invasive activity of myofibroblasts is due to the combined action of Hepatocyte growth factor/scatter factor (HGF/SF) and tenascin-C, two molecules known to promote invasion in clinical tumors and their experimental surrogates. The myofibroblasts are themselves invasive and this activity is stimulated by TGF-β. N-cadherin is implicated in the invasion response of myofibroblasts. The question now is which of the multiple factors present in the tumor ecosystem is responsible for the pro-invasive switch that turns a benign tumor into a malignant one.
Pp. 49-56
Integration of the PLM system with other applications
Antti Saaksvuori; Anselmi Immonen
Cancer cell invasion necessitates the participation of host cells. One of the cell types that stimulates invasion of colon and other cancer cells is the myofibroblast, as evidenced from the histology of cancer and from coculture experiments. Cancer cells produce transforming growth factor-β (TGF-β) and TGF-β converts fibroblasts into pro-invasive myofibroblasts. In the in vitro system with human cancer cell lines and freshly isolated stromal cells, the pro-invasive activity of myofibroblasts is due to the combined action of Hepatocyte growth factor/scatter factor (HGF/SF) and tenascin-C, two molecules known to promote invasion in clinical tumors and their experimental surrogates. The myofibroblasts are themselves invasive and this activity is stimulated by TGF-β. N-cadherin is implicated in the invasion response of myofibroblasts. The question now is which of the multiple factors present in the tumor ecosystem is responsible for the pro-invasive switch that turns a benign tumor into a malignant one.
Pp. 57-72
Deployment of the PLM system
Antti Saaksvuori; Anselmi Immonen
Cancer cell invasion necessitates the participation of host cells. One of the cell types that stimulates invasion of colon and other cancer cells is the myofibroblast, as evidenced from the histology of cancer and from coculture experiments. Cancer cells produce transforming growth factor-β (TGF-β) and TGF-β converts fibroblasts into pro-invasive myofibroblasts. In the in vitro system with human cancer cell lines and freshly isolated stromal cells, the pro-invasive activity of myofibroblasts is due to the combined action of Hepatocyte growth factor/scatter factor (HGF/SF) and tenascin-C, two molecules known to promote invasion in clinical tumors and their experimental surrogates. The myofibroblasts are themselves invasive and this activity is stimulated by TGF-β. N-cadherin is implicated in the invasion response of myofibroblasts. The question now is which of the multiple factors present in the tumor ecosystem is responsible for the pro-invasive switch that turns a benign tumor into a malignant one.
Pp. 73-98
Business benefits of a PLM system
Antti Saaksvuori; Anselmi Immonen
Cancer cell invasion necessitates the participation of host cells. One of the cell types that stimulates invasion of colon and other cancer cells is the myofibroblast, as evidenced from the histology of cancer and from coculture experiments. Cancer cells produce transforming growth factor-β (TGF-β) and TGF-β converts fibroblasts into pro-invasive myofibroblasts. In the in vitro system with human cancer cell lines and freshly isolated stromal cells, the pro-invasive activity of myofibroblasts is due to the combined action of Hepatocyte growth factor/scatter factor (HGF/SF) and tenascin-C, two molecules known to promote invasion in clinical tumors and their experimental surrogates. The myofibroblasts are themselves invasive and this activity is stimulated by TGF-β. N-cadherin is implicated in the invasion response of myofibroblasts. The question now is which of the multiple factors present in the tumor ecosystem is responsible for the pro-invasive switch that turns a benign tumor into a malignant one.
Pp. 99-122
Challenges of product management in manufacturing industry
Antti Saaksvuori; Anselmi Immonen
Cancer cell invasion necessitates the participation of host cells. One of the cell types that stimulates invasion of colon and other cancer cells is the myofibroblast, as evidenced from the histology of cancer and from coculture experiments. Cancer cells produce transforming growth factor-β (TGF-β) and TGF-β converts fibroblasts into pro-invasive myofibroblasts. In the in vitro system with human cancer cell lines and freshly isolated stromal cells, the pro-invasive activity of myofibroblasts is due to the combined action of Hepatocyte growth factor/scatter factor (HGF/SF) and tenascin-C, two molecules known to promote invasion in clinical tumors and their experimental surrogates. The myofibroblasts are themselves invasive and this activity is stimulated by TGF-β. N-cadherin is implicated in the invasion response of myofibroblasts. The question now is which of the multiple factors present in the tumor ecosystem is responsible for the pro-invasive switch that turns a benign tumor into a malignant one.
Pp. 123-164
The role of product information management in collaborative business development
Antti Saaksvuori; Anselmi Immonen
Cancer cell invasion necessitates the participation of host cells. One of the cell types that stimulates invasion of colon and other cancer cells is the myofibroblast, as evidenced from the histology of cancer and from coculture experiments. Cancer cells produce transforming growth factor-β (TGF-β) and TGF-β converts fibroblasts into pro-invasive myofibroblasts. In the in vitro system with human cancer cell lines and freshly isolated stromal cells, the pro-invasive activity of myofibroblasts is due to the combined action of Hepatocyte growth factor/scatter factor (HGF/SF) and tenascin-C, two molecules known to promote invasion in clinical tumors and their experimental surrogates. The myofibroblasts are themselves invasive and this activity is stimulated by TGF-β. N-cadherin is implicated in the invasion response of myofibroblasts. The question now is which of the multiple factors present in the tumor ecosystem is responsible for the pro-invasive switch that turns a benign tumor into a malignant one.
Pp. 165-180
Understanding the product lifecycle
Antti Saaksvuori; Anselmi Immonen
Cancer cell invasion necessitates the participation of host cells. One of the cell types that stimulates invasion of colon and other cancer cells is the myofibroblast, as evidenced from the histology of cancer and from coculture experiments. Cancer cells produce transforming growth factor-β (TGF-β) and TGF-β converts fibroblasts into pro-invasive myofibroblasts. In the in vitro system with human cancer cell lines and freshly isolated stromal cells, the pro-invasive activity of myofibroblasts is due to the combined action of Hepatocyte growth factor/scatter factor (HGF/SF) and tenascin-C, two molecules known to promote invasion in clinical tumors and their experimental surrogates. The myofibroblasts are themselves invasive and this activity is stimulated by TGF-β. N-cadherin is implicated in the invasion response of myofibroblasts. The question now is which of the multiple factors present in the tumor ecosystem is responsible for the pro-invasive switch that turns a benign tumor into a malignant one.
Pp. 181-198