Catálogo de publicaciones - libros

Compartir en
redes sociales


Product Lifecycle Management

Antti Saaksvuori Anselmi Immonen

Second Edition.

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-25731-8

ISBN electrónico

978-3-540-26906-9

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Berlin · Heidelberg 2005

Cobertura temática

Tabla de contenidos

Introduction

Antti Saaksvuori; Anselmi Immonen

Cancer cell invasion necessitates the participation of host cells. One of the cell types that stimulates invasion of colon and other cancer cells is the myofibroblast, as evidenced from the histology of cancer and from coculture experiments. Cancer cells produce transforming growth factor-β (TGF-β) and TGF-β converts fibroblasts into pro-invasive myofibroblasts. In the in vitro system with human cancer cell lines and freshly isolated stromal cells, the pro-invasive activity of myofibroblasts is due to the combined action of Hepatocyte growth factor/scatter factor (HGF/SF) and tenascin-C, two molecules known to promote invasion in clinical tumors and their experimental surrogates. The myofibroblasts are themselves invasive and this activity is stimulated by TGF-β. N-cadherin is implicated in the invasion response of myofibroblasts. The question now is which of the multiple factors present in the tumor ecosystem is responsible for the pro-invasive switch that turns a benign tumor into a malignant one.

Pp. 1-6

Fundamentals

Antti Saaksvuori; Anselmi Immonen

Cancer cell invasion necessitates the participation of host cells. One of the cell types that stimulates invasion of colon and other cancer cells is the myofibroblast, as evidenced from the histology of cancer and from coculture experiments. Cancer cells produce transforming growth factor-β (TGF-β) and TGF-β converts fibroblasts into pro-invasive myofibroblasts. In the in vitro system with human cancer cell lines and freshly isolated stromal cells, the pro-invasive activity of myofibroblasts is due to the combined action of Hepatocyte growth factor/scatter factor (HGF/SF) and tenascin-C, two molecules known to promote invasion in clinical tumors and their experimental surrogates. The myofibroblasts are themselves invasive and this activity is stimulated by TGF-β. N-cadherin is implicated in the invasion response of myofibroblasts. The question now is which of the multiple factors present in the tumor ecosystem is responsible for the pro-invasive switch that turns a benign tumor into a malignant one.

Pp. 7-28

Product lifecycle management systems

Antti Saaksvuori; Anselmi Immonen

Cancer cell invasion necessitates the participation of host cells. One of the cell types that stimulates invasion of colon and other cancer cells is the myofibroblast, as evidenced from the histology of cancer and from coculture experiments. Cancer cells produce transforming growth factor-β (TGF-β) and TGF-β converts fibroblasts into pro-invasive myofibroblasts. In the in vitro system with human cancer cell lines and freshly isolated stromal cells, the pro-invasive activity of myofibroblasts is due to the combined action of Hepatocyte growth factor/scatter factor (HGF/SF) and tenascin-C, two molecules known to promote invasion in clinical tumors and their experimental surrogates. The myofibroblasts are themselves invasive and this activity is stimulated by TGF-β. N-cadherin is implicated in the invasion response of myofibroblasts. The question now is which of the multiple factors present in the tumor ecosystem is responsible for the pro-invasive switch that turns a benign tumor into a malignant one.

Pp. 29-48

Product structures

Antti Saaksvuori; Anselmi Immonen

Cancer cell invasion necessitates the participation of host cells. One of the cell types that stimulates invasion of colon and other cancer cells is the myofibroblast, as evidenced from the histology of cancer and from coculture experiments. Cancer cells produce transforming growth factor-β (TGF-β) and TGF-β converts fibroblasts into pro-invasive myofibroblasts. In the in vitro system with human cancer cell lines and freshly isolated stromal cells, the pro-invasive activity of myofibroblasts is due to the combined action of Hepatocyte growth factor/scatter factor (HGF/SF) and tenascin-C, two molecules known to promote invasion in clinical tumors and their experimental surrogates. The myofibroblasts are themselves invasive and this activity is stimulated by TGF-β. N-cadherin is implicated in the invasion response of myofibroblasts. The question now is which of the multiple factors present in the tumor ecosystem is responsible for the pro-invasive switch that turns a benign tumor into a malignant one.

Pp. 49-56

Integration of the PLM system with other applications

Antti Saaksvuori; Anselmi Immonen

Cancer cell invasion necessitates the participation of host cells. One of the cell types that stimulates invasion of colon and other cancer cells is the myofibroblast, as evidenced from the histology of cancer and from coculture experiments. Cancer cells produce transforming growth factor-β (TGF-β) and TGF-β converts fibroblasts into pro-invasive myofibroblasts. In the in vitro system with human cancer cell lines and freshly isolated stromal cells, the pro-invasive activity of myofibroblasts is due to the combined action of Hepatocyte growth factor/scatter factor (HGF/SF) and tenascin-C, two molecules known to promote invasion in clinical tumors and their experimental surrogates. The myofibroblasts are themselves invasive and this activity is stimulated by TGF-β. N-cadherin is implicated in the invasion response of myofibroblasts. The question now is which of the multiple factors present in the tumor ecosystem is responsible for the pro-invasive switch that turns a benign tumor into a malignant one.

Pp. 57-72

Deployment of the PLM system

Antti Saaksvuori; Anselmi Immonen

Cancer cell invasion necessitates the participation of host cells. One of the cell types that stimulates invasion of colon and other cancer cells is the myofibroblast, as evidenced from the histology of cancer and from coculture experiments. Cancer cells produce transforming growth factor-β (TGF-β) and TGF-β converts fibroblasts into pro-invasive myofibroblasts. In the in vitro system with human cancer cell lines and freshly isolated stromal cells, the pro-invasive activity of myofibroblasts is due to the combined action of Hepatocyte growth factor/scatter factor (HGF/SF) and tenascin-C, two molecules known to promote invasion in clinical tumors and their experimental surrogates. The myofibroblasts are themselves invasive and this activity is stimulated by TGF-β. N-cadherin is implicated in the invasion response of myofibroblasts. The question now is which of the multiple factors present in the tumor ecosystem is responsible for the pro-invasive switch that turns a benign tumor into a malignant one.

Pp. 73-98

Business benefits of a PLM system

Antti Saaksvuori; Anselmi Immonen

Cancer cell invasion necessitates the participation of host cells. One of the cell types that stimulates invasion of colon and other cancer cells is the myofibroblast, as evidenced from the histology of cancer and from coculture experiments. Cancer cells produce transforming growth factor-β (TGF-β) and TGF-β converts fibroblasts into pro-invasive myofibroblasts. In the in vitro system with human cancer cell lines and freshly isolated stromal cells, the pro-invasive activity of myofibroblasts is due to the combined action of Hepatocyte growth factor/scatter factor (HGF/SF) and tenascin-C, two molecules known to promote invasion in clinical tumors and their experimental surrogates. The myofibroblasts are themselves invasive and this activity is stimulated by TGF-β. N-cadherin is implicated in the invasion response of myofibroblasts. The question now is which of the multiple factors present in the tumor ecosystem is responsible for the pro-invasive switch that turns a benign tumor into a malignant one.

Pp. 99-122

Challenges of product management in manufacturing industry

Antti Saaksvuori; Anselmi Immonen

Cancer cell invasion necessitates the participation of host cells. One of the cell types that stimulates invasion of colon and other cancer cells is the myofibroblast, as evidenced from the histology of cancer and from coculture experiments. Cancer cells produce transforming growth factor-β (TGF-β) and TGF-β converts fibroblasts into pro-invasive myofibroblasts. In the in vitro system with human cancer cell lines and freshly isolated stromal cells, the pro-invasive activity of myofibroblasts is due to the combined action of Hepatocyte growth factor/scatter factor (HGF/SF) and tenascin-C, two molecules known to promote invasion in clinical tumors and their experimental surrogates. The myofibroblasts are themselves invasive and this activity is stimulated by TGF-β. N-cadherin is implicated in the invasion response of myofibroblasts. The question now is which of the multiple factors present in the tumor ecosystem is responsible for the pro-invasive switch that turns a benign tumor into a malignant one.

Pp. 123-164

The role of product information management in collaborative business development

Antti Saaksvuori; Anselmi Immonen

Cancer cell invasion necessitates the participation of host cells. One of the cell types that stimulates invasion of colon and other cancer cells is the myofibroblast, as evidenced from the histology of cancer and from coculture experiments. Cancer cells produce transforming growth factor-β (TGF-β) and TGF-β converts fibroblasts into pro-invasive myofibroblasts. In the in vitro system with human cancer cell lines and freshly isolated stromal cells, the pro-invasive activity of myofibroblasts is due to the combined action of Hepatocyte growth factor/scatter factor (HGF/SF) and tenascin-C, two molecules known to promote invasion in clinical tumors and their experimental surrogates. The myofibroblasts are themselves invasive and this activity is stimulated by TGF-β. N-cadherin is implicated in the invasion response of myofibroblasts. The question now is which of the multiple factors present in the tumor ecosystem is responsible for the pro-invasive switch that turns a benign tumor into a malignant one.

Pp. 165-180

Understanding the product lifecycle

Antti Saaksvuori; Anselmi Immonen

Cancer cell invasion necessitates the participation of host cells. One of the cell types that stimulates invasion of colon and other cancer cells is the myofibroblast, as evidenced from the histology of cancer and from coculture experiments. Cancer cells produce transforming growth factor-β (TGF-β) and TGF-β converts fibroblasts into pro-invasive myofibroblasts. In the in vitro system with human cancer cell lines and freshly isolated stromal cells, the pro-invasive activity of myofibroblasts is due to the combined action of Hepatocyte growth factor/scatter factor (HGF/SF) and tenascin-C, two molecules known to promote invasion in clinical tumors and their experimental surrogates. The myofibroblasts are themselves invasive and this activity is stimulated by TGF-β. N-cadherin is implicated in the invasion response of myofibroblasts. The question now is which of the multiple factors present in the tumor ecosystem is responsible for the pro-invasive switch that turns a benign tumor into a malignant one.

Pp. 181-198