Catálogo de publicaciones - libros

Compartir en
redes sociales


Permutation, Parametric and Bootstrap Tests of Hypotheses

Phillip Good

Third Edition.

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-0-387-20279-2

ISBN electrónico

978-0-387-27158-3

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Science+Business Media, Inc. 2005

Cobertura temática

Tabla de contenidos

A Wide Range of Applications

Phillip Good

Face image can be seen as a complex visual object, which combines a set of characterizing facial features. These facial features are crucial hints for machine to distinguish different face images. However, the face image also contains certain amount of redundant information which can not contribute to the face image retrieval task. Therefore, in this paper we propose a retrieval system which is aim to eliminate such effect at three different levels. The Ternary Feature Vector (TFV) is generated from quantized block transform coefficients. Histograms based on TFV are formed from certain subimages. Through this way, irrelevant information is gradually removed, and the structural and statistical information are combined. We testified our ideas over the public face database FERET with the Cumulative Match Score evaluation. We show that proper selection of subimage and feature vectors can significantly improve the performance with minimized complexity. Despite of the simplicity, the proposed measures provide results which are on par with best results using other methods.

Pp. 1-12

Optimal Procedures

Phillip Good

Face image can be seen as a complex visual object, which combines a set of characterizing facial features. These facial features are crucial hints for machine to distinguish different face images. However, the face image also contains certain amount of redundant information which can not contribute to the face image retrieval task. Therefore, in this paper we propose a retrieval system which is aim to eliminate such effect at three different levels. The Ternary Feature Vector (TFV) is generated from quantized block transform coefficients. Histograms based on TFV are formed from certain subimages. Through this way, irrelevant information is gradually removed, and the structural and statistical information are combined. We testified our ideas over the public face database FERET with the Cumulative Match Score evaluation. We show that proper selection of subimage and feature vectors can significantly improve the performance with minimized complexity. Despite of the simplicity, the proposed measures provide results which are on par with best results using other methods.

Pp. 13-31

Testing Hypotheses

Phillip Good

Face image can be seen as a complex visual object, which combines a set of characterizing facial features. These facial features are crucial hints for machine to distinguish different face images. However, the face image also contains certain amount of redundant information which can not contribute to the face image retrieval task. Therefore, in this paper we propose a retrieval system which is aim to eliminate such effect at three different levels. The Ternary Feature Vector (TFV) is generated from quantized block transform coefficients. Histograms based on TFV are formed from certain subimages. Through this way, irrelevant information is gradually removed, and the structural and statistical information are combined. We testified our ideas over the public face database FERET with the Cumulative Match Score evaluation. We show that proper selection of subimage and feature vectors can significantly improve the performance with minimized complexity. Despite of the simplicity, the proposed measures provide results which are on par with best results using other methods.

Pp. 33-65

Distributions

Phillip Good

Face image can be seen as a complex visual object, which combines a set of characterizing facial features. These facial features are crucial hints for machine to distinguish different face images. However, the face image also contains certain amount of redundant information which can not contribute to the face image retrieval task. Therefore, in this paper we propose a retrieval system which is aim to eliminate such effect at three different levels. The Ternary Feature Vector (TFV) is generated from quantized block transform coefficients. Histograms based on TFV are formed from certain subimages. Through this way, irrelevant information is gradually removed, and the structural and statistical information are combined. We testified our ideas over the public face database FERET with the Cumulative Match Score evaluation. We show that proper selection of subimage and feature vectors can significantly improve the performance with minimized complexity. Despite of the simplicity, the proposed measures provide results which are on par with best results using other methods.

Pp. 67-78

Multiple Tests

Phillip Good

Face image can be seen as a complex visual object, which combines a set of characterizing facial features. These facial features are crucial hints for machine to distinguish different face images. However, the face image also contains certain amount of redundant information which can not contribute to the face image retrieval task. Therefore, in this paper we propose a retrieval system which is aim to eliminate such effect at three different levels. The Ternary Feature Vector (TFV) is generated from quantized block transform coefficients. Histograms based on TFV are formed from certain subimages. Through this way, irrelevant information is gradually removed, and the structural and statistical information are combined. We testified our ideas over the public face database FERET with the Cumulative Match Score evaluation. We show that proper selection of subimage and feature vectors can significantly improve the performance with minimized complexity. Despite of the simplicity, the proposed measures provide results which are on par with best results using other methods.

Pp. 79-84

Experimental Designs

Phillip Good

Face image can be seen as a complex visual object, which combines a set of characterizing facial features. These facial features are crucial hints for machine to distinguish different face images. However, the face image also contains certain amount of redundant information which can not contribute to the face image retrieval task. Therefore, in this paper we propose a retrieval system which is aim to eliminate such effect at three different levels. The Ternary Feature Vector (TFV) is generated from quantized block transform coefficients. Histograms based on TFV are formed from certain subimages. Through this way, irrelevant information is gradually removed, and the structural and statistical information are combined. We testified our ideas over the public face database FERET with the Cumulative Match Score evaluation. We show that proper selection of subimage and feature vectors can significantly improve the performance with minimized complexity. Despite of the simplicity, the proposed measures provide results which are on par with best results using other methods.

Pp. 85-118

Multifactor Designs

Phillip Good

Face image can be seen as a complex visual object, which combines a set of characterizing facial features. These facial features are crucial hints for machine to distinguish different face images. However, the face image also contains certain amount of redundant information which can not contribute to the face image retrieval task. Therefore, in this paper we propose a retrieval system which is aim to eliminate such effect at three different levels. The Ternary Feature Vector (TFV) is generated from quantized block transform coefficients. Histograms based on TFV are formed from certain subimages. Through this way, irrelevant information is gradually removed, and the structural and statistical information are combined. We testified our ideas over the public face database FERET with the Cumulative Match Score evaluation. We show that proper selection of subimage and feature vectors can significantly improve the performance with minimized complexity. Despite of the simplicity, the proposed measures provide results which are on par with best results using other methods.

Pp. 119-142

Categorical Data

Phillip Good

Face image can be seen as a complex visual object, which combines a set of characterizing facial features. These facial features are crucial hints for machine to distinguish different face images. However, the face image also contains certain amount of redundant information which can not contribute to the face image retrieval task. Therefore, in this paper we propose a retrieval system which is aim to eliminate such effect at three different levels. The Ternary Feature Vector (TFV) is generated from quantized block transform coefficients. Histograms based on TFV are formed from certain subimages. Through this way, irrelevant information is gradually removed, and the structural and statistical information are combined. We testified our ideas over the public face database FERET with the Cumulative Match Score evaluation. We show that proper selection of subimage and feature vectors can significantly improve the performance with minimized complexity. Despite of the simplicity, the proposed measures provide results which are on par with best results using other methods.

Pp. 143-168

Multivariate Analysis

Phillip Good

Face image can be seen as a complex visual object, which combines a set of characterizing facial features. These facial features are crucial hints for machine to distinguish different face images. However, the face image also contains certain amount of redundant information which can not contribute to the face image retrieval task. Therefore, in this paper we propose a retrieval system which is aim to eliminate such effect at three different levels. The Ternary Feature Vector (TFV) is generated from quantized block transform coefficients. Histograms based on TFV are formed from certain subimages. Through this way, irrelevant information is gradually removed, and the structural and statistical information are combined. We testified our ideas over the public face database FERET with the Cumulative Match Score evaluation. We show that proper selection of subimage and feature vectors can significantly improve the performance with minimized complexity. Despite of the simplicity, the proposed measures provide results which are on par with best results using other methods.

Pp. 169-188

Clustering in Time and Space

Phillip Good

Face image can be seen as a complex visual object, which combines a set of characterizing facial features. These facial features are crucial hints for machine to distinguish different face images. However, the face image also contains certain amount of redundant information which can not contribute to the face image retrieval task. Therefore, in this paper we propose a retrieval system which is aim to eliminate such effect at three different levels. The Ternary Feature Vector (TFV) is generated from quantized block transform coefficients. Histograms based on TFV are formed from certain subimages. Through this way, irrelevant information is gradually removed, and the structural and statistical information are combined. We testified our ideas over the public face database FERET with the Cumulative Match Score evaluation. We show that proper selection of subimage and feature vectors can significantly improve the performance with minimized complexity. Despite of the simplicity, the proposed measures provide results which are on par with best results using other methods.

Pp. 189-194