Catálogo de publicaciones - libros

Compartir en
redes sociales


Nonstandard Analysis

Martin Väth

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Analysis

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-7643-7773-1

ISBN electrónico

978-3-7643-7774-8

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Birkhäuser Basel 2007

Cobertura temática

Tabla de contenidos

Preliminaries

Martin Väth

The pricing of a portfolio of financial instruments is a common and important computational problem in financial engineering. In addition to pricing, a portfolio or risk manager may be interested in determining an effective hedging strategy, computing the value at risk, or valuing the portfolio under several different scenarios. Because of the size of many practical portfolios and the complexity of modern financial instruments the computing time to solve these problems can be several hours. We demonstrate a powerful and practical method for solving these problems on clusters using web services.

Pp. 1-21

Nonstandard Models

Martin Väth

The pricing of a portfolio of financial instruments is a common and important computational problem in financial engineering. In addition to pricing, a portfolio or risk manager may be interested in determining an effective hedging strategy, computing the value at risk, or valuing the portfolio under several different scenarios. Because of the size of many practical portfolios and the complexity of modern financial instruments the computing time to solve these problems can be several hours. We demonstrate a powerful and practical method for solving these problems on clusters using web services.

Pp. 23-57

Nonstandard Real Analysis

Martin Väth

The pricing of a portfolio of financial instruments is a common and important computational problem in financial engineering. In addition to pricing, a portfolio or risk manager may be interested in determining an effective hedging strategy, computing the value at risk, or valuing the portfolio under several different scenarios. Because of the size of many practical portfolios and the complexity of modern financial instruments the computing time to solve these problems can be several hours. We demonstrate a powerful and practical method for solving these problems on clusters using web services.

Pp. 59-102

Enlargements and Saturated Models

Martin Väth

The pricing of a portfolio of financial instruments is a common and important computational problem in financial engineering. In addition to pricing, a portfolio or risk manager may be interested in determining an effective hedging strategy, computing the value at risk, or valuing the portfolio under several different scenarios. Because of the size of many practical portfolios and the complexity of modern financial instruments the computing time to solve these problems can be several hours. We demonstrate a powerful and practical method for solving these problems on clusters using web services.

Pp. 103-124

Functionals, Generalized Limits, and Additive Measures

Martin Väth

The pricing of a portfolio of financial instruments is a common and important computational problem in financial engineering. In addition to pricing, a portfolio or risk manager may be interested in determining an effective hedging strategy, computing the value at risk, or valuing the portfolio under several different scenarios. Because of the size of many practical portfolios and the complexity of modern financial instruments the computing time to solve these problems can be several hours. We demonstrate a powerful and practical method for solving these problems on clusters using web services.

Pp. 125-147

Nonstandard Topology and Functional Analysis

Martin Väth

The pricing of a portfolio of financial instruments is a common and important computational problem in financial engineering. In addition to pricing, a portfolio or risk manager may be interested in determining an effective hedging strategy, computing the value at risk, or valuing the portfolio under several different scenarios. Because of the size of many practical portfolios and the complexity of modern financial instruments the computing time to solve these problems can be several hours. We demonstrate a powerful and practical method for solving these problems on clusters using web services.

Pp. 149-196

Miscellaneous

Martin Väth

The pricing of a portfolio of financial instruments is a common and important computational problem in financial engineering. In addition to pricing, a portfolio or risk manager may be interested in determining an effective hedging strategy, computing the value at risk, or valuing the portfolio under several different scenarios. Because of the size of many practical portfolios and the complexity of modern financial instruments the computing time to solve these problems can be several hours. We demonstrate a powerful and practical method for solving these problems on clusters using web services.

Pp. 197-209