Catálogo de publicaciones - libros
Who's Who in Orthopedics
Seyed Behrooz Mostofi
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Orthopedics; History of Medicine
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-1-85233-786-5
ISBN electrónico
978-1-84628-070-2
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer-Verlag London Limited 2005
Cobertura temática
Tabla de contenidos
Alfred Washington Adson 1887–1951
Palabras clave: Mayo Clinic; Radial Pulse; Immigrant Parent; Deep Inspiration; Toid Arthritis.
Pp. 1-2
David McCrae Aitken 1876–1954
Palabras clave: Thoracic Outlet Syndrome; Orthopedic Hospital; Yacht Club; British Orthopedic Association; Swell Knee.
Pp. 2-3
Fred Houdlette Albee 1876–1945
Palabras clave: Close Friend; Orthopedic Hospital; American Orthopedic; Ununited Fracture; American Orthopedic Association.
Pp. 4-7
Lewis Anderson 1930–1997
Seyed Behrooz Mostofi
Cluster analysis is an exploratory technique. Functional data methods offer the advantage of allowing a greater variety of clustering matrixes to choose from. The examples involving the clustering of Canadian weather stations are meant to be illustrative, since the known locations of weather stations can be used to infer which ones should exhibit similar weather patterns. The objective is not so much to find “real” clusters of stations, but rather to learn how the weather patterns at the different stations are related. Some of the clusters obtained consist of stations that are located in the same region, which we would expect similar to have weather patterns. Other aspects of the clustering are harder to interpret (e.g., assignment of Prince Rupert and Halifax to the same cluster), although they may also indicate relationships in weather patterns for stations at some distance from each other. A cluster analysis that accounted for both precipitation and temperature (and other weather related variables such as humidity) might be preferable, provided a suitable clustering metric could be found.
Methods for determining the number of clusters in functional cluster analysis are identical to those in the classical case, and thus are not discussed further here.
If groupings for some of the data are known in advance, it may be preferable to use a discriminant function analysis to find the variables and matrix that best classify the remaining observations. In the chapter on functional generalized linear models, we use a form of discriminant function analysis, functional logistic models, to classify the weather stations.
Pp. 7-8
Alan Graham Apley 1914–1996
Seyed Behrooz Mostofi
Cluster analysis is an exploratory technique. Functional data methods offer the advantage of allowing a greater variety of clustering matrixes to choose from. The examples involving the clustering of Canadian weather stations are meant to be illustrative, since the known locations of weather stations can be used to infer which ones should exhibit similar weather patterns. The objective is not so much to find “real” clusters of stations, but rather to learn how the weather patterns at the different stations are related. Some of the clusters obtained consist of stations that are located in the same region, which we would expect similar to have weather patterns. Other aspects of the clustering are harder to interpret (e.g., assignment of Prince Rupert and Halifax to the same cluster), although they may also indicate relationships in weather patterns for stations at some distance from each other. A cluster analysis that accounted for both precipitation and temperature (and other weather related variables such as humidity) might be preferable, provided a suitable clustering metric could be found.
Methods for determining the number of clusters in functional cluster analysis are identical to those in the classical case, and thus are not discussed further here.
If groupings for some of the data are known in advance, it may be preferable to use a discriminant function analysis to find the variables and matrix that best classify the remaining observations. In the chapter on functional generalized linear models, we use a form of discriminant function analysis, functional logistic models, to classify the weather stations.
Pp. 13-15
William J. Baer 1872–1931
Seyed Behrooz Mostofi
Cluster analysis is an exploratory technique. Functional data methods offer the advantage of allowing a greater variety of clustering matrixes to choose from. The examples involving the clustering of Canadian weather stations are meant to be illustrative, since the known locations of weather stations can be used to infer which ones should exhibit similar weather patterns. The objective is not so much to find “real” clusters of stations, but rather to learn how the weather patterns at the different stations are related. Some of the clusters obtained consist of stations that are located in the same region, which we would expect similar to have weather patterns. Other aspects of the clustering are harder to interpret (e.g., assignment of Prince Rupert and Halifax to the same cluster), although they may also indicate relationships in weather patterns for stations at some distance from each other. A cluster analysis that accounted for both precipitation and temperature (and other weather related variables such as humidity) might be preferable, provided a suitable clustering metric could be found.
Methods for determining the number of clusters in functional cluster analysis are identical to those in the classical case, and thus are not discussed further here.
If groupings for some of the data are known in advance, it may be preferable to use a discriminant function analysis to find the variables and matrix that best classify the remaining observations. In the chapter on functional generalized linear models, we use a form of discriminant function analysis, functional logistic models, to classify the weather stations.
Pp. 19-19
William Morant Baker 1839–1896
Seyed Behrooz Mostofi
Cluster analysis is an exploratory technique. Functional data methods offer the advantage of allowing a greater variety of clustering matrixes to choose from. The examples involving the clustering of Canadian weather stations are meant to be illustrative, since the known locations of weather stations can be used to infer which ones should exhibit similar weather patterns. The objective is not so much to find “real” clusters of stations, but rather to learn how the weather patterns at the different stations are related. Some of the clusters obtained consist of stations that are located in the same region, which we would expect similar to have weather patterns. Other aspects of the clustering are harder to interpret (e.g., assignment of Prince Rupert and Halifax to the same cluster), although they may also indicate relationships in weather patterns for stations at some distance from each other. A cluster analysis that accounted for both precipitation and temperature (and other weather related variables such as humidity) might be preferable, provided a suitable clustering metric could be found.
Methods for determining the number of clusters in functional cluster analysis are identical to those in the classical case, and thus are not discussed further here.
If groupings for some of the data are known in advance, it may be preferable to use a discriminant function analysis to find the variables and matrix that best classify the remaining observations. In the chapter on functional generalized linear models, we use a form of discriminant function analysis, functional logistic models, to classify the weather stations.
Pp. 19-19
Arthur Sidney Blundell Bankart 1879–1951
Palabras clave: Orthopedic Hospital; Assistant Surgeon; Vertebral Disc; House Surgeon; British Orthopedic Association.
Pp. 20-22
Joseph Seaton Barr 1901–1964
Palabras clave: Massachusetts General Hospital; Scaphoid Fracture; Surgical Material; Vertebral Disc; Naval Hospital.
Pp. 22-24
John Rhea Barton 1794–1871
Palabras clave: Scaphoid Fracture; Wedge Osteotomy; Trochanteric Osteotomy; Bony Ankylosis; British Orthopaedic Association.
Pp. 24-25