Catálogo de publicaciones - libros

Compartir en
redes sociales


Image-Guided IMRT

Thomas Bortfeld ; Rupert Schmidt-Ullrich ; Wilfried De Neve ; David E. Wazer (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Radiotherapy; Imaging / Radiology; Oncology

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-20511-1

ISBN electrónico

978-3-540-30356-5

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2006

Tabla de contenidos

Rationale of Intensity Modulated Radiation Therapy: A Clinician’s Point of View

Wilfried De Neve

Intensity-modulated photon beams can be used to obtain homogeneous concave dose distributions. They allow the creation of intentionally non-homogeneous dose distributions for the prescription of multiple dose levels to be delivered during the same fraction. Dose gradients can be delivered with controlled steepness and location. Unwanted dosimetrical effects of loss of electron equilibrium near interfaces between lower and higher density tissues can be counteracted by IMRT but the appropriate planning technology is not generally available yet. Simple and straightforward is the use of intensity-modulated beams for missing tissue compensation. Dose distributions can be generated to match brachytherapy or electron beam plans. Mixed intensity and energy modulated electron-photon beams with steep dose-fall off and sharp depth-independent penumbra can be created.

Palabras clave: Planning Target Volume; Dose Distribution; Radiat Oncol Biol Phys; Intensity Modulate Radiation Therapy; Gross Tumor Volume.

Part I - Foundations | Pp. 1-9

The Potential and Limitations of IMRT: A Physicist’s Point of View

R. Mohan; T. Bortfeld

Palabras clave: Dose Distribution; Radiat Oncol Biol Phys; Helical Tomotherapy; Beam Angle; Integral Dose.

Part I - Foundations | Pp. 11-18

Imaging for IMRT

Peter Remeijer; Marcel van Herk

Palabras clave: Planning Target Volume; Image Registration; Radiat Oncol Biol Phys; Clinical Target Volume; Treatment Planning System.

Part I - Foundations | Pp. 19-30

Physical Optimization

Uwe Oelfke; Simeon Nill; Jan J. Wilkens

Palabras clave: Planning Target Volume; Radiat Oncol Biol Phys; Intensity Modulate Radiation Therapy; IMRT Plan; Multileaf Collimator.

Part I - Foundations | Pp. 31-45

Practical IMRT Planning

Wilfried De Neve; Yan Wu; Gary Ezzell

Palabras clave: Dose Distribution; Radiat Oncol Biol Phys; Dose Prescription; IMRT Planning; Dose Gradient.

Part I - Foundations | Pp. 47-59

Dose Calculations for IMRT

Jeffrey V. Siebers

Palabras clave: Monte Carlo; Dose Distribution; Dose Calculation; Multileaf Collimator; IMRT Dose.

Part I - Foundations | Pp. 61-71

IMRT Delivery Techniques

Steve Webb

Palabras clave: Radiat Oncol Biol Phys; Intensity Modulate Radiation Therapy; Monitor Unit; Multileaf Collimator; Gantry Angle.

Part I - Foundations | Pp. 73-90

Biological Aspects of IMRT Planning and Delivery

Andrzej Niemierko

Palabras clave: Target Volume; Dose Distribution; Radiat Oncol Biol Phys; IMRT Planning; Simultaneous Integrate Boost.

Part I - Foundations | Pp. 91-96

Image Guided Patient Setup

D. Verellen

Palabras clave: Target Volume; Radiat Oncol Biol Phys; Stereotactic Radiosurgery; Breathing Cycle; Portal Imaging.

Part I - Foundations | Pp. 97-116

QA-QC of IMRT: European Perspective

Carlos De Wagter

Routine QA in traditional radiation therapy involves numerous redundancy checks that are sometimes repeated for every patient. Extrapolation of this ‘attitude’ to IMRT is untenable. Instead, focused QA procedures that test the vulnerable links, are needed in the triad of routine patient-specific QA, periodic equipment QA and thorough class-solution QA. The physics team is encouraged to aim at a balance between the triad using the conceptual approach that has been presented to optimize and streamline QA procedures within class solutions, rather than proliferating redundant QA checks. Multi-center co-operation and QA networking can be helpful and stimulating. Rather than a burden to the physics team, QA should be a passionate professional activity of combining the appropriate instruments and strategy to ensure or even manage the radiation physics quality of the implemented IMRT planning and delivery processes. One might expect that new dedicated delivery technologies like tomotherapy and image guided robotic IMRT have the potential of shortening the loop of planning and delivery, and hence will allow the QA activities to be condensed and further streamlined. In the mean time, QA of the longer treatment chain remains mandatory and will further stimulate familiarization with IMRT and keep the level of alertness and vigilance.

Palabras clave: Dose Distribution; Quality Assurance Procedure; IMRT Treatment; Quality Assurance Activity; Treatment Chain.

Part I - Foundations | Pp. 117-128