Catálogo de publicaciones - libros
Image-Guided IMRT
Thomas Bortfeld ; Rupert Schmidt-Ullrich ; Wilfried De Neve ; David E. Wazer (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Radiotherapy; Imaging / Radiology; Oncology
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-20511-1
ISBN electrónico
978-3-540-30356-5
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2006
Cobertura temática
Tabla de contenidos
Rationale of Intensity Modulated Radiation Therapy: A Clinician’s Point of View
Wilfried De Neve
Intensity-modulated photon beams can be used to obtain homogeneous concave dose distributions. They allow the creation of intentionally non-homogeneous dose distributions for the prescription of multiple dose levels to be delivered during the same fraction. Dose gradients can be delivered with controlled steepness and location. Unwanted dosimetrical effects of loss of electron equilibrium near interfaces between lower and higher density tissues can be counteracted by IMRT but the appropriate planning technology is not generally available yet. Simple and straightforward is the use of intensity-modulated beams for missing tissue compensation. Dose distributions can be generated to match brachytherapy or electron beam plans. Mixed intensity and energy modulated electron-photon beams with steep dose-fall off and sharp depth-independent penumbra can be created.
Palabras clave: Planning Target Volume; Dose Distribution; Radiat Oncol Biol Phys; Intensity Modulate Radiation Therapy; Gross Tumor Volume.
Part I - Foundations | Pp. 1-9
The Potential and Limitations of IMRT: A Physicist’s Point of View
R. Mohan; T. Bortfeld
Palabras clave: Dose Distribution; Radiat Oncol Biol Phys; Helical Tomotherapy; Beam Angle; Integral Dose.
Part I - Foundations | Pp. 11-18
Imaging for IMRT
Peter Remeijer; Marcel van Herk
Palabras clave: Planning Target Volume; Image Registration; Radiat Oncol Biol Phys; Clinical Target Volume; Treatment Planning System.
Part I - Foundations | Pp. 19-30
Physical Optimization
Uwe Oelfke; Simeon Nill; Jan J. Wilkens
Palabras clave: Planning Target Volume; Radiat Oncol Biol Phys; Intensity Modulate Radiation Therapy; IMRT Plan; Multileaf Collimator.
Part I - Foundations | Pp. 31-45
Practical IMRT Planning
Wilfried De Neve; Yan Wu; Gary Ezzell
Palabras clave: Dose Distribution; Radiat Oncol Biol Phys; Dose Prescription; IMRT Planning; Dose Gradient.
Part I - Foundations | Pp. 47-59
Dose Calculations for IMRT
Jeffrey V. Siebers
Palabras clave: Monte Carlo; Dose Distribution; Dose Calculation; Multileaf Collimator; IMRT Dose.
Part I - Foundations | Pp. 61-71
IMRT Delivery Techniques
Steve Webb
Palabras clave: Radiat Oncol Biol Phys; Intensity Modulate Radiation Therapy; Monitor Unit; Multileaf Collimator; Gantry Angle.
Part I - Foundations | Pp. 73-90
Biological Aspects of IMRT Planning and Delivery
Andrzej Niemierko
Palabras clave: Target Volume; Dose Distribution; Radiat Oncol Biol Phys; IMRT Planning; Simultaneous Integrate Boost.
Part I - Foundations | Pp. 91-96
Image Guided Patient Setup
D. Verellen
Palabras clave: Target Volume; Radiat Oncol Biol Phys; Stereotactic Radiosurgery; Breathing Cycle; Portal Imaging.
Part I - Foundations | Pp. 97-116
QA-QC of IMRT: European Perspective
Carlos De Wagter
Routine QA in traditional radiation therapy involves numerous redundancy checks that are sometimes repeated for every patient. Extrapolation of this ‘attitude’ to IMRT is untenable. Instead, focused QA procedures that test the vulnerable links, are needed in the triad of routine patient-specific QA, periodic equipment QA and thorough class-solution QA. The physics team is encouraged to aim at a balance between the triad using the conceptual approach that has been presented to optimize and streamline QA procedures within class solutions, rather than proliferating redundant QA checks. Multi-center co-operation and QA networking can be helpful and stimulating. Rather than a burden to the physics team, QA should be a passionate professional activity of combining the appropriate instruments and strategy to ensure or even manage the radiation physics quality of the implemented IMRT planning and delivery processes. One might expect that new dedicated delivery technologies like tomotherapy and image guided robotic IMRT have the potential of shortening the loop of planning and delivery, and hence will allow the QA activities to be condensed and further streamlined. In the mean time, QA of the longer treatment chain remains mandatory and will further stimulate familiarization with IMRT and keep the level of alertness and vigilance.
Palabras clave: Dose Distribution; Quality Assurance Procedure; IMRT Treatment; Quality Assurance Activity; Treatment Chain.
Part I - Foundations | Pp. 117-128