Catálogo de publicaciones - libros

Compartir en
redes sociales


Applied Graph Theory in Computer Vision and Pattern Recognition

Abraham Kandel ; Horst Bunke ; Mark Last (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Appl.Mathematics/Computational Methods of Engineering; Artificial Intelligence (incl. Robotics)

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-68019-2

ISBN electrónico

978-3-540-68020-8

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2007

Tabla de contenidos

Multiresolution Image Segmentations in Graph Pyramids

Walter G. Kropatsch; Yll Haxhimusa; Adrian Ion

Palabras clave: Span Tree; Minimum Span Tree; Dual Graph; Primal Graph; Noisy Pixel.

Part I - Applied Graph Theory for Low Level Image Processing and Segmentation | Pp. 3-41

A Graphical Model Framework for Image Segmentation

Rui Huang; Vladimir Pavlovic; Dimitris N. Metaxas

Part I - Applied Graph Theory for Low Level Image Processing and Segmentation | Pp. 43-63

Digital Topologies on Graphs

Alain Bretto

Palabras clave: Topological Space; Bipartite Graph; Simple Game; Comparability Graph; Digital Space.

Part I - Applied Graph Theory for Low Level Image Processing and Segmentation | Pp. 65-82

How and Why Pattern Recognition and Computer Vision Applications Use Graphs

Donatello Conte; Pasquale Foggia; Carlo Sansone; Mario Vento

Palabras clave: Input Graph; Graph Match; Video Database; Pattern Recognition Letter; Edge Attribute.

Part II - Graph Similarity, Matching, and Learning for High Level Computer Vision and Pattern Recognition | Pp. 85-135

Efficient Algorithms on Trees and Graphs with Unique Node Labels

Gabriel Valiente

Palabras clave: Edit Distance; Graph Match; Node Label; Edit Operation; Graph Isomorphism.

Part II - Graph Similarity, Matching, and Learning for High Level Computer Vision and Pattern Recognition | Pp. 137-149

A Generic Graph Distance Measure Based on Multivalent Matchings

Sébastien Sorlin; Christine Solnon; Jean-Michel Jolion

Palabras clave: Graph Match; Isomorphism Problem; Subgraph Isomorphism; Common Subgraph; Graph Edit Distance.

Part II - Graph Similarity, Matching, and Learning for High Level Computer Vision and Pattern Recognition | Pp. 151-181

Learning from Supervised Graphs

Joseph Potts; Diane J. Cook; Lawrence B. Holder

Palabras clave: Input Graph; Minimum Description Length; Inductive Logic Programming; Frequent Subgraph; Minimum Description Length Principle.

Part II - Graph Similarity, Matching, and Learning for High Level Computer Vision and Pattern Recognition | Pp. 183-201

Graph-Based and Structural Methods for Fingerprint Classification

Gian Luca Marcialis; Fabio Roli; Alessandra Serrau

Palabras clave: Feature Vector; Fusion Rule; Structural Method; Input Graph; Graph Match.

Part III - Special Applications | Pp. 205-226

Graph Sequence Visualisation and its Application to Computer Network Monitoring and Abnormal Event Detection

Horst Bunke; P. Dickinson; A. Humm; Ch. Irniger; M. Kraetzl

Palabras clave: Intrusion Detection System; Graph Match; Graph Distance; Edit Operation; Graph Isomorphism.

Part III - Special Applications | Pp. 227-245

Clustering of Web Documents Using Graph Representations

Adam Schenker; Horst Bunke; Mark Last; Abraham Kandel

Part III - Special Applications | Pp. 247-265