Catálogo de publicaciones - libros
Quirky Sides of Scientists: True Tales of Ingenuity and Error From Physics and Astronomy
David R. Topper
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2007 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-0-387-71018-1
ISBN electrónico
978-0-387-71019-8
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2007
Información sobre derechos de publicación
© Springer Science+Business Media, LLC 2007
Cobertura temática
Tabla de contenidos
Tenacity and Stubbornness: Einstein on Theory and Experiment
David R. Topper
In single-channel techniques for hands-free acoustic human/machine interfaces, we deal with waveforms which are functions of the continuous time. The aim of multi-channel sound capture is to exploit the structure of propagating waves, i.e., spatial and temporal properties in order to better meet the requirements of speech enhancement. The received signals are thus deterministic functions of position and of time, and, therefore, are called or . They have properties which are governed by the law of physics, in particular the wave equation. Just as temporal filtering can be described by temporal impulse responses, the wave propagation in acoustic environments can be modeled using space-time filters which are described by spatio-temporal impulse responses. Often, the deterministic model of space-time signals cannot be applied to acoustic signals, since audio signals can hardly be described by functions where each time instance is assigned a unique numerical value. The deterministic model of room impulse responses is not appropriate if the spatial extension of the source cannot be neglected since such spatio-temporal impulse responses of acoustic environments can generally not be described analytically. In such situations, it is more convenient to use statistical random .elds which are the ex tension of stochastic processes to multi-dimensional parameter spaces.
Pp. 3-14
Convergence or Coincidence: Ancient Measurements of the Sun and Moon—How Far?
David R. Topper
In single-channel techniques for hands-free acoustic human/machine interfaces, we deal with waveforms which are functions of the continuous time. The aim of multi-channel sound capture is to exploit the structure of propagating waves, i.e., spatial and temporal properties in order to better meet the requirements of speech enhancement. The received signals are thus deterministic functions of position and of time, and, therefore, are called or . They have properties which are governed by the law of physics, in particular the wave equation. Just as temporal filtering can be described by temporal impulse responses, the wave propagation in acoustic environments can be modeled using space-time filters which are described by spatio-temporal impulse responses. Often, the deterministic model of space-time signals cannot be applied to acoustic signals, since audio signals can hardly be described by functions where each time instance is assigned a unique numerical value. The deterministic model of room impulse responses is not appropriate if the spatial extension of the source cannot be neglected since such spatio-temporal impulse responses of acoustic environments can generally not be described analytically. In such situations, it is more convenient to use statistical random .elds which are the ex tension of stochastic processes to multi-dimensional parameter spaces.
Pp. 15-24
The Rationality of Simplicity: Copernicus on Planetary Motion
David R. Topper
In single-channel techniques for hands-free acoustic human/machine interfaces, we deal with waveforms which are functions of the continuous time. The aim of multi-channel sound capture is to exploit the structure of propagating waves, i.e., spatial and temporal properties in order to better meet the requirements of speech enhancement. The received signals are thus deterministic functions of position and of time, and, therefore, are called or . They have properties which are governed by the law of physics, in particular the wave equation. Just as temporal filtering can be described by temporal impulse responses, the wave propagation in acoustic environments can be modeled using space-time filters which are described by spatio-temporal impulse responses. Often, the deterministic model of space-time signals cannot be applied to acoustic signals, since audio signals can hardly be described by functions where each time instance is assigned a unique numerical value. The deterministic model of room impulse responses is not appropriate if the spatial extension of the source cannot be neglected since such spatio-temporal impulse responses of acoustic environments can generally not be described analytically. In such situations, it is more convenient to use statistical random .elds which are the ex tension of stochastic processes to multi-dimensional parameter spaces.
Pp. 25-41
The Silence of Scientists: Venus’s Brightness, Earth’s Precession, and the Nebula in Orion
David R. Topper
In single-channel techniques for hands-free acoustic human/machine interfaces, we deal with waveforms which are functions of the continuous time. The aim of multi-channel sound capture is to exploit the structure of propagating waves, i.e., spatial and temporal properties in order to better meet the requirements of speech enhancement. The received signals are thus deterministic functions of position and of time, and, therefore, are called or . They have properties which are governed by the law of physics, in particular the wave equation. Just as temporal filtering can be described by temporal impulse responses, the wave propagation in acoustic environments can be modeled using space-time filters which are described by spatio-temporal impulse responses. Often, the deterministic model of space-time signals cannot be applied to acoustic signals, since audio signals can hardly be described by functions where each time instance is assigned a unique numerical value. The deterministic model of room impulse responses is not appropriate if the spatial extension of the source cannot be neglected since such spatio-temporal impulse responses of acoustic environments can generally not be described analytically. In such situations, it is more convenient to use statistical random .elds which are the ex tension of stochastic processes to multi-dimensional parameter spaces.
Pp. 43-66
Progress Through Error: Stars and Quasars—How Big, How Far?
David R. Topper
In single-channel techniques for hands-free acoustic human/machine interfaces, we deal with waveforms which are functions of the continuous time. The aim of multi-channel sound capture is to exploit the structure of propagating waves, i.e., spatial and temporal properties in order to better meet the requirements of speech enhancement. The received signals are thus deterministic functions of position and of time, and, therefore, are called or . They have properties which are governed by the law of physics, in particular the wave equation. Just as temporal filtering can be described by temporal impulse responses, the wave propagation in acoustic environments can be modeled using space-time filters which are described by spatio-temporal impulse responses. Often, the deterministic model of space-time signals cannot be applied to acoustic signals, since audio signals can hardly be described by functions where each time instance is assigned a unique numerical value. The deterministic model of room impulse responses is not appropriate if the spatial extension of the source cannot be neglected since such spatio-temporal impulse responses of acoustic environments can generally not be described analytically. In such situations, it is more convenient to use statistical random .elds which are the ex tension of stochastic processes to multi-dimensional parameter spaces.
Pp. 67-83
The Data Fit the Model but the Model is Wrong: Kepler and the Structure of the Cosmos
David R. Topper
In single-channel techniques for hands-free acoustic human/machine interfaces, we deal with waveforms which are functions of the continuous time. The aim of multi-channel sound capture is to exploit the structure of propagating waves, i.e., spatial and temporal properties in order to better meet the requirements of speech enhancement. The received signals are thus deterministic functions of position and of time, and, therefore, are called or . They have properties which are governed by the law of physics, in particular the wave equation. Just as temporal filtering can be described by temporal impulse responses, the wave propagation in acoustic environments can be modeled using space-time filters which are described by spatio-temporal impulse responses. Often, the deterministic model of space-time signals cannot be applied to acoustic signals, since audio signals can hardly be described by functions where each time instance is assigned a unique numerical value. The deterministic model of room impulse responses is not appropriate if the spatial extension of the source cannot be neglected since such spatio-temporal impulse responses of acoustic environments can generally not be described analytically. In such situations, it is more convenient to use statistical random .elds which are the ex tension of stochastic processes to multi-dimensional parameter spaces.
Pp. 85-107
Art Illustrates Science: Galileo, a Blemished Moon, and a Parabola of Blood
David R. Topper
In single-channel techniques for hands-free acoustic human/machine interfaces, we deal with waveforms which are functions of the continuous time. The aim of multi-channel sound capture is to exploit the structure of propagating waves, i.e., spatial and temporal properties in order to better meet the requirements of speech enhancement. The received signals are thus deterministic functions of position and of time, and, therefore, are called or . They have properties which are governed by the law of physics, in particular the wave equation. Just as temporal filtering can be described by temporal impulse responses, the wave propagation in acoustic environments can be modeled using space-time filters which are described by spatio-temporal impulse responses. Often, the deterministic model of space-time signals cannot be applied to acoustic signals, since audio signals can hardly be described by functions where each time instance is assigned a unique numerical value. The deterministic model of room impulse responses is not appropriate if the spatial extension of the source cannot be neglected since such spatio-temporal impulse responses of acoustic environments can generally not be described analytically. In such situations, it is more convenient to use statistical random .elds which are the ex tension of stochastic processes to multi-dimensional parameter spaces.
Pp. 109-121
Ensnared in Circles: Galileo and the Law of Projectile Motion
David R. Topper
In single-channel techniques for hands-free acoustic human/machine interfaces, we deal with waveforms which are functions of the continuous time. The aim of multi-channel sound capture is to exploit the structure of propagating waves, i.e., spatial and temporal properties in order to better meet the requirements of speech enhancement. The received signals are thus deterministic functions of position and of time, and, therefore, are called or . They have properties which are governed by the law of physics, in particular the wave equation. Just as temporal filtering can be described by temporal impulse responses, the wave propagation in acoustic environments can be modeled using space-time filters which are described by spatio-temporal impulse responses. Often, the deterministic model of space-time signals cannot be applied to acoustic signals, since audio signals can hardly be described by functions where each time instance is assigned a unique numerical value. The deterministic model of room impulse responses is not appropriate if the spatial extension of the source cannot be neglected since such spatio-temporal impulse responses of acoustic environments can generally not be described analytically. In such situations, it is more convenient to use statistical random .elds which are the ex tension of stochastic processes to multi-dimensional parameter spaces.
Pp. 123-137
Aesthetics and Holism: Newton on Light, Color, and Music
David R. Topper
In single-channel techniques for hands-free acoustic human/machine interfaces, we deal with waveforms which are functions of the continuous time. The aim of multi-channel sound capture is to exploit the structure of propagating waves, i.e., spatial and temporal properties in order to better meet the requirements of speech enhancement. The received signals are thus deterministic functions of position and of time, and, therefore, are called or . They have properties which are governed by the law of physics, in particular the wave equation. Just as temporal filtering can be described by temporal impulse responses, the wave propagation in acoustic environments can be modeled using space-time filters which are described by spatio-temporal impulse responses. Often, the deterministic model of space-time signals cannot be applied to acoustic signals, since audio signals can hardly be described by functions where each time instance is assigned a unique numerical value. The deterministic model of room impulse responses is not appropriate if the spatial extension of the source cannot be neglected since such spatio-temporal impulse responses of acoustic environments can generally not be described analytically. In such situations, it is more convenient to use statistical random .elds which are the ex tension of stochastic processes to multi-dimensional parameter spaces.
Pp. 139-153
Missing One’s Own Discovery Newton and the First Idea of an Artificial Satellite
David R. Topper
In single-channel techniques for hands-free acoustic human/machine interfaces, we deal with waveforms which are functions of the continuous time. The aim of multi-channel sound capture is to exploit the structure of propagating waves, i.e., spatial and temporal properties in order to better meet the requirements of speech enhancement. The received signals are thus deterministic functions of position and of time, and, therefore, are called or . They have properties which are governed by the law of physics, in particular the wave equation. Just as temporal filtering can be described by temporal impulse responses, the wave propagation in acoustic environments can be modeled using space-time filters which are described by spatio-temporal impulse responses. Often, the deterministic model of space-time signals cannot be applied to acoustic signals, since audio signals can hardly be described by functions where each time instance is assigned a unique numerical value. The deterministic model of room impulse responses is not appropriate if the spatial extension of the source cannot be neglected since such spatio-temporal impulse responses of acoustic environments can generally not be described analytically. In such situations, it is more convenient to use statistical random .elds which are the ex tension of stochastic processes to multi-dimensional parameter spaces.
Pp. 155-172