Catálogo de publicaciones - libros

Compartir en
redes sociales


The Physics of Birdsong

Gabriel B. Mindlin Rodrigo Laje

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Biophysics and Biological Physics; Neurobiology; Acoustics; Animal Anatomy / Morphology / Histology

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-25399-0

ISBN electrónico

978-3-540-28249-5

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2005

Cobertura temática

Tabla de contenidos

Elements of the Description

Gabriel B. Mindlin; Rodrigo Laje

In single-channel techniques for hands-free acoustic human/machine interfaces, we deal with waveforms which are functions of the continuous time. The aim of multi-channel sound capture is to exploit the structure of propagating waves, i.e., spatial and temporal properties in order to better meet the requirements of speech enhancement. The received signals are thus deterministic functions of position and of time, and, therefore, are called or . They have properties which are governed by the law of physics, in particular the wave equation. Just as temporal filtering can be described by temporal impulse responses, the wave propagation in acoustic environments can be modeled using space-time filters which are described by spatio-temporal impulse responses. Often, the deterministic model of space-time signals cannot be applied to acoustic signals, since audio signals can hardly be described by functions where each time instance is assigned a unique numerical value. The deterministic model of room impulse responses is not appropriate if the spatial extension of the source cannot be neglected since such spatio-temporal impulse responses of acoustic environments can generally not be described analytically. In such situations, it is more convenient to use statistical random .elds which are the ex tension of stochastic processes to multi-dimensional parameter spaces.

Pp. 1-15

Sources and Filters

Gabriel B. Mindlin; Rodrigo Laje

In single-channel techniques for hands-free acoustic human/machine interfaces, we deal with waveforms which are functions of the continuous time. The aim of multi-channel sound capture is to exploit the structure of propagating waves, i.e., spatial and temporal properties in order to better meet the requirements of speech enhancement. The received signals are thus deterministic functions of position and of time, and, therefore, are called or . They have properties which are governed by the law of physics, in particular the wave equation. Just as temporal filtering can be described by temporal impulse responses, the wave propagation in acoustic environments can be modeled using space-time filters which are described by spatio-temporal impulse responses. Often, the deterministic model of space-time signals cannot be applied to acoustic signals, since audio signals can hardly be described by functions where each time instance is assigned a unique numerical value. The deterministic model of room impulse responses is not appropriate if the spatial extension of the source cannot be neglected since such spatio-temporal impulse responses of acoustic environments can generally not be described analytically. In such situations, it is more convenient to use statistical random .elds which are the ex tension of stochastic processes to multi-dimensional parameter spaces.

Pp. 17-35

Anatomy of the Vocal Organ

Gabriel B. Mindlin; Rodrigo Laje

In single-channel techniques for hands-free acoustic human/machine interfaces, we deal with waveforms which are functions of the continuous time. The aim of multi-channel sound capture is to exploit the structure of propagating waves, i.e., spatial and temporal properties in order to better meet the requirements of speech enhancement. The received signals are thus deterministic functions of position and of time, and, therefore, are called or . They have properties which are governed by the law of physics, in particular the wave equation. Just as temporal filtering can be described by temporal impulse responses, the wave propagation in acoustic environments can be modeled using space-time filters which are described by spatio-temporal impulse responses. Often, the deterministic model of space-time signals cannot be applied to acoustic signals, since audio signals can hardly be described by functions where each time instance is assigned a unique numerical value. The deterministic model of room impulse responses is not appropriate if the spatial extension of the source cannot be neglected since such spatio-temporal impulse responses of acoustic environments can generally not be described analytically. In such situations, it is more convenient to use statistical random .elds which are the ex tension of stochastic processes to multi-dimensional parameter spaces.

Pp. 37-46

The Sources of Sound in Birdsong

Gabriel B. Mindlin; Rodrigo Laje

In single-channel techniques for hands-free acoustic human/machine interfaces, we deal with waveforms which are functions of the continuous time. The aim of multi-channel sound capture is to exploit the structure of propagating waves, i.e., spatial and temporal properties in order to better meet the requirements of speech enhancement. The received signals are thus deterministic functions of position and of time, and, therefore, are called or . They have properties which are governed by the law of physics, in particular the wave equation. Just as temporal filtering can be described by temporal impulse responses, the wave propagation in acoustic environments can be modeled using space-time filters which are described by spatio-temporal impulse responses. Often, the deterministic model of space-time signals cannot be applied to acoustic signals, since audio signals can hardly be described by functions where each time instance is assigned a unique numerical value. The deterministic model of room impulse responses is not appropriate if the spatial extension of the source cannot be neglected since such spatio-temporal impulse responses of acoustic environments can generally not be described analytically. In such situations, it is more convenient to use statistical random .elds which are the ex tension of stochastic processes to multi-dimensional parameter spaces.

Pp. 47-60

The Instructions for the Syrinx

Gabriel B. Mindlin; Rodrigo Laje

In single-channel techniques for hands-free acoustic human/machine interfaces, we deal with waveforms which are functions of the continuous time. The aim of multi-channel sound capture is to exploit the structure of propagating waves, i.e., spatial and temporal properties in order to better meet the requirements of speech enhancement. The received signals are thus deterministic functions of position and of time, and, therefore, are called or . They have properties which are governed by the law of physics, in particular the wave equation. Just as temporal filtering can be described by temporal impulse responses, the wave propagation in acoustic environments can be modeled using space-time filters which are described by spatio-temporal impulse responses. Often, the deterministic model of space-time signals cannot be applied to acoustic signals, since audio signals can hardly be described by functions where each time instance is assigned a unique numerical value. The deterministic model of room impulse responses is not appropriate if the spatial extension of the source cannot be neglected since such spatio-temporal impulse responses of acoustic environments can generally not be described analytically. In such situations, it is more convenient to use statistical random .elds which are the ex tension of stochastic processes to multi-dimensional parameter spaces.

Pp. 61-77

Complex Oscillations

Gabriel B. Mindlin; Rodrigo Laje

In single-channel techniques for hands-free acoustic human/machine interfaces, we deal with waveforms which are functions of the continuous time. The aim of multi-channel sound capture is to exploit the structure of propagating waves, i.e., spatial and temporal properties in order to better meet the requirements of speech enhancement. The received signals are thus deterministic functions of position and of time, and, therefore, are called or . They have properties which are governed by the law of physics, in particular the wave equation. Just as temporal filtering can be described by temporal impulse responses, the wave propagation in acoustic environments can be modeled using space-time filters which are described by spatio-temporal impulse responses. Often, the deterministic model of space-time signals cannot be applied to acoustic signals, since audio signals can hardly be described by functions where each time instance is assigned a unique numerical value. The deterministic model of room impulse responses is not appropriate if the spatial extension of the source cannot be neglected since such spatio-temporal impulse responses of acoustic environments can generally not be described analytically. In such situations, it is more convenient to use statistical random .elds which are the ex tension of stochastic processes to multi-dimensional parameter spaces.

Pp. 79-97

Synthesizing Birdsong

Gabriel B. Mindlin; Rodrigo Laje

In single-channel techniques for hands-free acoustic human/machine interfaces, we deal with waveforms which are functions of the continuous time. The aim of multi-channel sound capture is to exploit the structure of propagating waves, i.e., spatial and temporal properties in order to better meet the requirements of speech enhancement. The received signals are thus deterministic functions of position and of time, and, therefore, are called or . They have properties which are governed by the law of physics, in particular the wave equation. Just as temporal filtering can be described by temporal impulse responses, the wave propagation in acoustic environments can be modeled using space-time filters which are described by spatio-temporal impulse responses. Often, the deterministic model of space-time signals cannot be applied to acoustic signals, since audio signals can hardly be described by functions where each time instance is assigned a unique numerical value. The deterministic model of room impulse responses is not appropriate if the spatial extension of the source cannot be neglected since such spatio-temporal impulse responses of acoustic environments can generally not be described analytically. In such situations, it is more convenient to use statistical random .elds which are the ex tension of stochastic processes to multi-dimensional parameter spaces.

Pp. 99-112

From the Syrinx to the Brain

Gabriel B. Mindlin; Rodrigo Laje

In single-channel techniques for hands-free acoustic human/machine interfaces, we deal with waveforms which are functions of the continuous time. The aim of multi-channel sound capture is to exploit the structure of propagating waves, i.e., spatial and temporal properties in order to better meet the requirements of speech enhancement. The received signals are thus deterministic functions of position and of time, and, therefore, are called or . They have properties which are governed by the law of physics, in particular the wave equation. Just as temporal filtering can be described by temporal impulse responses, the wave propagation in acoustic environments can be modeled using space-time filters which are described by spatio-temporal impulse responses. Often, the deterministic model of space-time signals cannot be applied to acoustic signals, since audio signals can hardly be described by functions where each time instance is assigned a unique numerical value. The deterministic model of room impulse responses is not appropriate if the spatial extension of the source cannot be neglected since such spatio-temporal impulse responses of acoustic environments can generally not be described analytically. In such situations, it is more convenient to use statistical random .elds which are the ex tension of stochastic processes to multi-dimensional parameter spaces.

Pp. 113-132

Complex Rhythms

Gabriel B. Mindlin; Rodrigo Laje

In single-channel techniques for hands-free acoustic human/machine interfaces, we deal with waveforms which are functions of the continuous time. The aim of multi-channel sound capture is to exploit the structure of propagating waves, i.e., spatial and temporal properties in order to better meet the requirements of speech enhancement. The received signals are thus deterministic functions of position and of time, and, therefore, are called or . They have properties which are governed by the law of physics, in particular the wave equation. Just as temporal filtering can be described by temporal impulse responses, the wave propagation in acoustic environments can be modeled using space-time filters which are described by spatio-temporal impulse responses. Often, the deterministic model of space-time signals cannot be applied to acoustic signals, since audio signals can hardly be described by functions where each time instance is assigned a unique numerical value. The deterministic model of room impulse responses is not appropriate if the spatial extension of the source cannot be neglected since such spatio-temporal impulse responses of acoustic environments can generally not be described analytically. In such situations, it is more convenient to use statistical random .elds which are the ex tension of stochastic processes to multi-dimensional parameter spaces.

Pp. 133-149