Catálogo de publicaciones - libros

Compartir en
redes sociales


Optimal Production Planning for PCB Assembly

William Ho Ping Ji

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-84628-499-1

ISBN electrónico

978-1-84628-500-4

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag London Limited 2007

Cobertura temática

Tabla de contenidos

Introduction

William Ho; Ping Ji

Software that is regularly used for real world problem solving or addressing a real world application must be continually adapted and enhanced to maintain its fitness to an ever changing real world, its applications and application domains. This adaptation and enhancement activities are termed , As progressive activity is undertaken, the complexity (e.g., functional, structural) of the evolving system is likely to increase unless work, termed , is also undertaken in order to control and even reduce complexity. However, with progressive and anti-regressive work naturally competing for the same pool of resources, management will benefit from means to estimate the amount of work and resources to be applied to each of the two types. After providing a necessary background, this chapter describes a systems dynamics model that can serve as a basis of a tool to support decision making regarding the optimal personnel allocation over the system lifetime. The model is provided as an example of the use of process modelling in order to plan and manage long-term software evolution.

Pp. 1-5

Optimization Techniques

William Ho; Ping Ji

Software that is regularly used for real world problem solving or addressing a real world application must be continually adapted and enhanced to maintain its fitness to an ever changing real world, its applications and application domains. This adaptation and enhancement activities are termed , As progressive activity is undertaken, the complexity (e.g., functional, structural) of the evolving system is likely to increase unless work, termed , is also undertaken in order to control and even reduce complexity. However, with progressive and anti-regressive work naturally competing for the same pool of resources, management will benefit from means to estimate the amount of work and resources to be applied to each of the two types. After providing a necessary background, this chapter describes a systems dynamics model that can serve as a basis of a tool to support decision making regarding the optimal personnel allocation over the system lifetime. The model is provided as an example of the use of process modelling in order to plan and manage long-term software evolution.

Pp. 7-18

The Sequential Pick-and-Place (PAP) Machine

William Ho; Ping Ji

Software that is regularly used for real world problem solving or addressing a real world application must be continually adapted and enhanced to maintain its fitness to an ever changing real world, its applications and application domains. This adaptation and enhancement activities are termed , As progressive activity is undertaken, the complexity (e.g., functional, structural) of the evolving system is likely to increase unless work, termed , is also undertaken in order to control and even reduce complexity. However, with progressive and anti-regressive work naturally competing for the same pool of resources, management will benefit from means to estimate the amount of work and resources to be applied to each of the two types. After providing a necessary background, this chapter describes a systems dynamics model that can serve as a basis of a tool to support decision making regarding the optimal personnel allocation over the system lifetime. The model is provided as an example of the use of process modelling in order to plan and manage long-term software evolution.

Pp. 19-51

The Concurrent Chip Shooter (CS) Machine

William Ho; Ping Ji

Software that is regularly used for real world problem solving or addressing a real world application must be continually adapted and enhanced to maintain its fitness to an ever changing real world, its applications and application domains. This adaptation and enhancement activities are termed , As progressive activity is undertaken, the complexity (e.g., functional, structural) of the evolving system is likely to increase unless work, termed , is also undertaken in order to control and even reduce complexity. However, with progressive and anti-regressive work naturally competing for the same pool of resources, management will benefit from means to estimate the amount of work and resources to be applied to each of the two types. After providing a necessary background, this chapter describes a systems dynamics model that can serve as a basis of a tool to support decision making regarding the optimal personnel allocation over the system lifetime. The model is provided as an example of the use of process modelling in order to plan and manage long-term software evolution.

Pp. 53-84

The Line Assignment and the Component Allocation Problems

William Ho; Ping Ji

The line assignment and the component allocation problems are tackled in this chapter. To optimize each of the PCB assembly problems, both mathematical modeling and heuristic methods have been applied. Some observations concerning these problems are made:

The next chapter will develop a prototype of the “Printed Circuit Board Assembly Planning System” (PCBAPS).

Pp. 85-108

A Prototype of the Printed Circuit Board Assembly Planning System (PCBAPS)

William Ho; Ping Ji

A prototype of the “Printed Circuit Board Assembly Planning System” (PCBAP has been developed in this chapter. The PCBAPS uses genetic algorithms to solve the line assignment problem, the component allocation problem, and the integrated problems for both types of placement machines. Some observations are made after the system has been developed:

Pp. 109-113