Catálogo de publicaciones - libros
Efficiency, Justice and Care: Philosophical Reflections on Scarcity in Health Care
Yvonne Denier
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2007 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-1-4020-5213-2
ISBN electrónico
978-1-4020-5214-9
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2007
Información sobre derechos de publicación
© Springer Science+Business Media B.V. 2007
Cobertura temática
Tabla de contenidos
Just Health Care: Core Issues
Yvonne Denier
Job scheduling typically focuses on the CPU with little work existing to include I/O or memory. Time-shared execution provides the chance to hide I/O and long-communication latencies though potentially creating a memory conflict. We consider two different cases: standard local CPU scheduling and coscheduling on hyperthreaded CPUs. The latter supports coscheduling without any context switches and provides additional options for CPU-internal resource sharing. We present an approach that includes all possible resources into the schedule optimization and improves utilization by coscheduling two jobs if feasible. Our LOMARC approach partially reorders the queue by lookahead to increase the potential to find good matches. In simulations based on the workload model of [12], we have obtained improvements of about 50% in both response times and relative bounded response times on hyperthreaded CPUs (i.e. cut times by half) and of about 25% on standard CPUs for our LOMARC scheduling approach.
Part I - Just Health Care: Presuppositions and Objectives | Pp. 7-32
Scarcity, Finitude and the Normative Value of Health
Yvonne Denier
Job scheduling typically focuses on the CPU with little work existing to include I/O or memory. Time-shared execution provides the chance to hide I/O and long-communication latencies though potentially creating a memory conflict. We consider two different cases: standard local CPU scheduling and coscheduling on hyperthreaded CPUs. The latter supports coscheduling without any context switches and provides additional options for CPU-internal resource sharing. We present an approach that includes all possible resources into the schedule optimization and improves utilization by coscheduling two jobs if feasible. Our LOMARC approach partially reorders the queue by lookahead to increase the potential to find good matches. In simulations based on the workload model of [12], we have obtained improvements of about 50% in both response times and relative bounded response times on hyperthreaded CPUs (i.e. cut times by half) and of about 25% on standard CPUs for our LOMARC scheduling approach.
Part I - Just Health Care: Presuppositions and Objectives | Pp. 33-97
Justice as Fairness: John Rawls
Yvonne Denier
Job scheduling typically focuses on the CPU with little work existing to include I/O or memory. Time-shared execution provides the chance to hide I/O and long-communication latencies though potentially creating a memory conflict. We consider two different cases: standard local CPU scheduling and coscheduling on hyperthreaded CPUs. The latter supports coscheduling without any context switches and provides additional options for CPU-internal resource sharing. We present an approach that includes all possible resources into the schedule optimization and improves utilization by coscheduling two jobs if feasible. Our LOMARC approach partially reorders the queue by lookahead to increase the potential to find good matches. In simulations based on the workload model of [12], we have obtained improvements of about 50% in both response times and relative bounded response times on hyperthreaded CPUs (i.e. cut times by half) and of about 25% on standard CPUs for our LOMARC scheduling approach.
Part II - Distributive Justice and Health Care | Pp. 103-151
Nussbaum's Approach: A Non-Contractarian Account of Care
Yvonne Denier
Job scheduling typically focuses on the CPU with little work existing to include I/O or memory. Time-shared execution provides the chance to hide I/O and long-communication latencies though potentially creating a memory conflict. We consider two different cases: standard local CPU scheduling and coscheduling on hyperthreaded CPUs. The latter supports coscheduling without any context switches and provides additional options for CPU-internal resource sharing. We present an approach that includes all possible resources into the schedule optimization and improves utilization by coscheduling two jobs if feasible. Our LOMARC approach partially reorders the queue by lookahead to increase the potential to find good matches. In simulations based on the workload model of [12], we have obtained improvements of about 50% in both response times and relative bounded response times on hyperthreaded CPUs (i.e. cut times by half) and of about 25% on standard CPUs for our LOMARC scheduling approach.
Part II - Distributive Justice and Health Care | Pp. 153-206
Setting Limits: Dworkin's Proposal
Yvonne Denier
Job scheduling typically focuses on the CPU with little work existing to include I/O or memory. Time-shared execution provides the chance to hide I/O and long-communication latencies though potentially creating a memory conflict. We consider two different cases: standard local CPU scheduling and coscheduling on hyperthreaded CPUs. The latter supports coscheduling without any context switches and provides additional options for CPU-internal resource sharing. We present an approach that includes all possible resources into the schedule optimization and improves utilization by coscheduling two jobs if feasible. Our LOMARC approach partially reorders the queue by lookahead to increase the potential to find good matches. In simulations based on the workload model of [12], we have obtained improvements of about 50% in both response times and relative bounded response times on hyperthreaded CPUs (i.e. cut times by half) and of about 25% on standard CPUs for our LOMARC scheduling approach.
Part II - Distributive Justice and Health Care | Pp. 207-259
Just Health Care: Foundations and Prospects
Yvonne Denier
Job scheduling typically focuses on the CPU with little work existing to include I/O or memory. Time-shared execution provides the chance to hide I/O and long-communication latencies though potentially creating a memory conflict. We consider two different cases: standard local CPU scheduling and coscheduling on hyperthreaded CPUs. The latter supports coscheduling without any context switches and provides additional options for CPU-internal resource sharing. We present an approach that includes all possible resources into the schedule optimization and improves utilization by coscheduling two jobs if feasible. Our LOMARC approach partially reorders the queue by lookahead to increase the potential to find good matches. In simulations based on the workload model of [12], we have obtained improvements of about 50% in both response times and relative bounded response times on hyperthreaded CPUs (i.e. cut times by half) and of about 25% on standard CPUs for our LOMARC scheduling approach.
- General Conclusion: Health Care and the Limits of Human Existence | Pp. 267-284