Catálogo de publicaciones - libros

Compartir en
redes sociales


Efficiency, Justice and Care: Philosophical Reflections on Scarcity in Health Care

Yvonne Denier

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-4020-5213-2

ISBN electrónico

978-1-4020-5214-9

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Science+Business Media B.V. 2007

Tabla de contenidos

Just Health Care: Core Issues

Yvonne Denier

Job scheduling typically focuses on the CPU with little work existing to include I/O or memory. Time-shared execution provides the chance to hide I/O and long-communication latencies though potentially creating a memory conflict. We consider two different cases: standard local CPU scheduling and coscheduling on hyperthreaded CPUs. The latter supports coscheduling without any context switches and provides additional options for CPU-internal resource sharing. We present an approach that includes all possible resources into the schedule optimization and improves utilization by coscheduling two jobs if feasible. Our LOMARC approach partially reorders the queue by lookahead to increase the potential to find good matches. In simulations based on the workload model of [12], we have obtained improvements of about 50% in both response times and relative bounded response times on hyperthreaded CPUs (i.e. cut times by half) and of about 25% on standard CPUs for our LOMARC scheduling approach.

Part I - Just Health Care: Presuppositions and Objectives | Pp. 7-32

Scarcity, Finitude and the Normative Value of Health

Yvonne Denier

Job scheduling typically focuses on the CPU with little work existing to include I/O or memory. Time-shared execution provides the chance to hide I/O and long-communication latencies though potentially creating a memory conflict. We consider two different cases: standard local CPU scheduling and coscheduling on hyperthreaded CPUs. The latter supports coscheduling without any context switches and provides additional options for CPU-internal resource sharing. We present an approach that includes all possible resources into the schedule optimization and improves utilization by coscheduling two jobs if feasible. Our LOMARC approach partially reorders the queue by lookahead to increase the potential to find good matches. In simulations based on the workload model of [12], we have obtained improvements of about 50% in both response times and relative bounded response times on hyperthreaded CPUs (i.e. cut times by half) and of about 25% on standard CPUs for our LOMARC scheduling approach.

Part I - Just Health Care: Presuppositions and Objectives | Pp. 33-97

Justice as Fairness: John Rawls

Yvonne Denier

Job scheduling typically focuses on the CPU with little work existing to include I/O or memory. Time-shared execution provides the chance to hide I/O and long-communication latencies though potentially creating a memory conflict. We consider two different cases: standard local CPU scheduling and coscheduling on hyperthreaded CPUs. The latter supports coscheduling without any context switches and provides additional options for CPU-internal resource sharing. We present an approach that includes all possible resources into the schedule optimization and improves utilization by coscheduling two jobs if feasible. Our LOMARC approach partially reorders the queue by lookahead to increase the potential to find good matches. In simulations based on the workload model of [12], we have obtained improvements of about 50% in both response times and relative bounded response times on hyperthreaded CPUs (i.e. cut times by half) and of about 25% on standard CPUs for our LOMARC scheduling approach.

Part II - Distributive Justice and Health Care | Pp. 103-151

Nussbaum's Approach: A Non-Contractarian Account of Care

Yvonne Denier

Job scheduling typically focuses on the CPU with little work existing to include I/O or memory. Time-shared execution provides the chance to hide I/O and long-communication latencies though potentially creating a memory conflict. We consider two different cases: standard local CPU scheduling and coscheduling on hyperthreaded CPUs. The latter supports coscheduling without any context switches and provides additional options for CPU-internal resource sharing. We present an approach that includes all possible resources into the schedule optimization and improves utilization by coscheduling two jobs if feasible. Our LOMARC approach partially reorders the queue by lookahead to increase the potential to find good matches. In simulations based on the workload model of [12], we have obtained improvements of about 50% in both response times and relative bounded response times on hyperthreaded CPUs (i.e. cut times by half) and of about 25% on standard CPUs for our LOMARC scheduling approach.

Part II - Distributive Justice and Health Care | Pp. 153-206

Setting Limits: Dworkin's Proposal

Yvonne Denier

Job scheduling typically focuses on the CPU with little work existing to include I/O or memory. Time-shared execution provides the chance to hide I/O and long-communication latencies though potentially creating a memory conflict. We consider two different cases: standard local CPU scheduling and coscheduling on hyperthreaded CPUs. The latter supports coscheduling without any context switches and provides additional options for CPU-internal resource sharing. We present an approach that includes all possible resources into the schedule optimization and improves utilization by coscheduling two jobs if feasible. Our LOMARC approach partially reorders the queue by lookahead to increase the potential to find good matches. In simulations based on the workload model of [12], we have obtained improvements of about 50% in both response times and relative bounded response times on hyperthreaded CPUs (i.e. cut times by half) and of about 25% on standard CPUs for our LOMARC scheduling approach.

Part II - Distributive Justice and Health Care | Pp. 207-259

Just Health Care: Foundations and Prospects

Yvonne Denier

Job scheduling typically focuses on the CPU with little work existing to include I/O or memory. Time-shared execution provides the chance to hide I/O and long-communication latencies though potentially creating a memory conflict. We consider two different cases: standard local CPU scheduling and coscheduling on hyperthreaded CPUs. The latter supports coscheduling without any context switches and provides additional options for CPU-internal resource sharing. We present an approach that includes all possible resources into the schedule optimization and improves utilization by coscheduling two jobs if feasible. Our LOMARC approach partially reorders the queue by lookahead to increase the potential to find good matches. In simulations based on the workload model of [12], we have obtained improvements of about 50% in both response times and relative bounded response times on hyperthreaded CPUs (i.e. cut times by half) and of about 25% on standard CPUs for our LOMARC scheduling approach.

- General Conclusion: Health Care and the Limits of Human Existence | Pp. 267-284