Catálogo de publicaciones - libros

Compartir en
redes sociales


Diplomacy and International Law in Globalized Relations

Wilfried Bolewski

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-71100-1

ISBN electrónico

978-3-540-71101-8

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2007

Cobertura temática

Tabla de contenidos

Introduction: Practitioner’s perspective of diplomacy

Wilfried Bolewski

This chapter describes the theory of subjective preference for the sound field applied to designing concert halls. Special attention is paid to the process of obtaining scientific results, rather than only describing a final design method. Attention has also been given to enhancing satisfaction in the selection of the most preferred seat for each individual in a given hall. We begin with a brief historical review of concert hall acoustics and related fields since 1900.

A neurally grounded theory of subjective preference for the sound field in a concert hall, based on a model of the human auditory–brain system, is described []. Most generally, subjective preference itself is regarded as a primitive response of a living creature and entails judgments that steer an organism in the direction of maintaining its life. Brain activities relating to the scale value of subjective preference, obtained by paired-comparison tests, have been determined. The model represents , relating the autocorrelation function (ACF) mechanism and the interaural cross-correlation function (IACF) mechanism for signals arriving at the two ear entrances. The representations of ACF have a firm neural basis in the temporal patterning signal at each of the two ears, while the IACF describes the correlations between the signals arriving at the two ear entrances. Since Helmholtz, it has been well appreciated that the cochlea carries out a rough spectral analysis of sound signals. However, by the use the of the spectrum of an acoustic signal, it was hard to obtain factors or cues to describe subjective responses directly. The auditory representations from the cochlea to the cortex that have been found to be related to subjective preference in a deep way involve these temporal response patterns, which have a very different character from those related to power spectrum analyses. The scale value of subjective preference of the sound field is well described by four orthogonal factors. Two are temporal factors (the initial delay time between the direct sound and the first reflection, Δ, and the reverberation time, ) associated with the left cerebral hemisphere, and two are spatial factors [the binaural listening level (LL) and the magnitude of the IACF, the IACC] associated with the right hemisphere. The theory of subjective preference enables us to calculate the acoustical quality at any seat in a proposed concert hall, which leads to a seat selection system.

The temporal treatment enables musicians to choose the music program and/or performing style most suited to a performance in a particular concert hall. Also, for designing the stage enclosure for music performers, a temporal factor is proposed. Acoustical quality at each seating position examined in a real hall is confirmed by both temporal and spatial factors.

- Germany | Pp. 1-11

Diplomacy between statecraft and social science

Wilfried Bolewski

This chapter describes the theory of subjective preference for the sound field applied to designing concert halls. Special attention is paid to the process of obtaining scientific results, rather than only describing a final design method. Attention has also been given to enhancing satisfaction in the selection of the most preferred seat for each individual in a given hall. We begin with a brief historical review of concert hall acoustics and related fields since 1900.

A neurally grounded theory of subjective preference for the sound field in a concert hall, based on a model of the human auditory–brain system, is described []. Most generally, subjective preference itself is regarded as a primitive response of a living creature and entails judgments that steer an organism in the direction of maintaining its life. Brain activities relating to the scale value of subjective preference, obtained by paired-comparison tests, have been determined. The model represents , relating the autocorrelation function (ACF) mechanism and the interaural cross-correlation function (IACF) mechanism for signals arriving at the two ear entrances. The representations of ACF have a firm neural basis in the temporal patterning signal at each of the two ears, while the IACF describes the correlations between the signals arriving at the two ear entrances. Since Helmholtz, it has been well appreciated that the cochlea carries out a rough spectral analysis of sound signals. However, by the use the of the spectrum of an acoustic signal, it was hard to obtain factors or cues to describe subjective responses directly. The auditory representations from the cochlea to the cortex that have been found to be related to subjective preference in a deep way involve these temporal response patterns, which have a very different character from those related to power spectrum analyses. The scale value of subjective preference of the sound field is well described by four orthogonal factors. Two are temporal factors (the initial delay time between the direct sound and the first reflection, Δ, and the reverberation time, ) associated with the left cerebral hemisphere, and two are spatial factors [the binaural listening level (LL) and the magnitude of the IACF, the IACC] associated with the right hemisphere. The theory of subjective preference enables us to calculate the acoustical quality at any seat in a proposed concert hall, which leads to a seat selection system.

The temporal treatment enables musicians to choose the music program and/or performing style most suited to a performance in a particular concert hall. Also, for designing the stage enclosure for music performers, a temporal factor is proposed. Acoustical quality at each seating position examined in a real hall is confirmed by both temporal and spatial factors.

Part I - Essentials of modern diplomacy | Pp. 25-26

Internalization of diplomacy or internationalization of domestic policy

Wilfried Bolewski

This chapter describes the theory of subjective preference for the sound field applied to designing concert halls. Special attention is paid to the process of obtaining scientific results, rather than only describing a final design method. Attention has also been given to enhancing satisfaction in the selection of the most preferred seat for each individual in a given hall. We begin with a brief historical review of concert hall acoustics and related fields since 1900.

A neurally grounded theory of subjective preference for the sound field in a concert hall, based on a model of the human auditory–brain system, is described []. Most generally, subjective preference itself is regarded as a primitive response of a living creature and entails judgments that steer an organism in the direction of maintaining its life. Brain activities relating to the scale value of subjective preference, obtained by paired-comparison tests, have been determined. The model represents , relating the autocorrelation function (ACF) mechanism and the interaural cross-correlation function (IACF) mechanism for signals arriving at the two ear entrances. The representations of ACF have a firm neural basis in the temporal patterning signal at each of the two ears, while the IACF describes the correlations between the signals arriving at the two ear entrances. Since Helmholtz, it has been well appreciated that the cochlea carries out a rough spectral analysis of sound signals. However, by the use the of the spectrum of an acoustic signal, it was hard to obtain factors or cues to describe subjective responses directly. The auditory representations from the cochlea to the cortex that have been found to be related to subjective preference in a deep way involve these temporal response patterns, which have a very different character from those related to power spectrum analyses. The scale value of subjective preference of the sound field is well described by four orthogonal factors. Two are temporal factors (the initial delay time between the direct sound and the first reflection, Δ, and the reverberation time, ) associated with the left cerebral hemisphere, and two are spatial factors [the binaural listening level (LL) and the magnitude of the IACF, the IACC] associated with the right hemisphere. The theory of subjective preference enables us to calculate the acoustical quality at any seat in a proposed concert hall, which leads to a seat selection system.

The temporal treatment enables musicians to choose the music program and/or performing style most suited to a performance in a particular concert hall. Also, for designing the stage enclosure for music performers, a temporal factor is proposed. Acoustical quality at each seating position examined in a real hall is confirmed by both temporal and spatial factors.

Part I - Essentials of modern diplomacy | Pp. 27-30

From national to European Foreign Service

Wilfried Bolewski

This chapter describes the theory of subjective preference for the sound field applied to designing concert halls. Special attention is paid to the process of obtaining scientific results, rather than only describing a final design method. Attention has also been given to enhancing satisfaction in the selection of the most preferred seat for each individual in a given hall. We begin with a brief historical review of concert hall acoustics and related fields since 1900.

A neurally grounded theory of subjective preference for the sound field in a concert hall, based on a model of the human auditory–brain system, is described []. Most generally, subjective preference itself is regarded as a primitive response of a living creature and entails judgments that steer an organism in the direction of maintaining its life. Brain activities relating to the scale value of subjective preference, obtained by paired-comparison tests, have been determined. The model represents , relating the autocorrelation function (ACF) mechanism and the interaural cross-correlation function (IACF) mechanism for signals arriving at the two ear entrances. The representations of ACF have a firm neural basis in the temporal patterning signal at each of the two ears, while the IACF describes the correlations between the signals arriving at the two ear entrances. Since Helmholtz, it has been well appreciated that the cochlea carries out a rough spectral analysis of sound signals. However, by the use the of the spectrum of an acoustic signal, it was hard to obtain factors or cues to describe subjective responses directly. The auditory representations from the cochlea to the cortex that have been found to be related to subjective preference in a deep way involve these temporal response patterns, which have a very different character from those related to power spectrum analyses. The scale value of subjective preference of the sound field is well described by four orthogonal factors. Two are temporal factors (the initial delay time between the direct sound and the first reflection, Δ, and the reverberation time, ) associated with the left cerebral hemisphere, and two are spatial factors [the binaural listening level (LL) and the magnitude of the IACF, the IACC] associated with the right hemisphere. The theory of subjective preference enables us to calculate the acoustical quality at any seat in a proposed concert hall, which leads to a seat selection system.

The temporal treatment enables musicians to choose the music program and/or performing style most suited to a performance in a particular concert hall. Also, for designing the stage enclosure for music performers, a temporal factor is proposed. Acoustical quality at each seating position examined in a real hall is confirmed by both temporal and spatial factors.

Part I - Essentials of modern diplomacy | Pp. 31-33

Symbolism and ritual in multilateral diplomacy

Wilfried Bolewski

This chapter describes the theory of subjective preference for the sound field applied to designing concert halls. Special attention is paid to the process of obtaining scientific results, rather than only describing a final design method. Attention has also been given to enhancing satisfaction in the selection of the most preferred seat for each individual in a given hall. We begin with a brief historical review of concert hall acoustics and related fields since 1900.

A neurally grounded theory of subjective preference for the sound field in a concert hall, based on a model of the human auditory–brain system, is described []. Most generally, subjective preference itself is regarded as a primitive response of a living creature and entails judgments that steer an organism in the direction of maintaining its life. Brain activities relating to the scale value of subjective preference, obtained by paired-comparison tests, have been determined. The model represents , relating the autocorrelation function (ACF) mechanism and the interaural cross-correlation function (IACF) mechanism for signals arriving at the two ear entrances. The representations of ACF have a firm neural basis in the temporal patterning signal at each of the two ears, while the IACF describes the correlations between the signals arriving at the two ear entrances. Since Helmholtz, it has been well appreciated that the cochlea carries out a rough spectral analysis of sound signals. However, by the use the of the spectrum of an acoustic signal, it was hard to obtain factors or cues to describe subjective responses directly. The auditory representations from the cochlea to the cortex that have been found to be related to subjective preference in a deep way involve these temporal response patterns, which have a very different character from those related to power spectrum analyses. The scale value of subjective preference of the sound field is well described by four orthogonal factors. Two are temporal factors (the initial delay time between the direct sound and the first reflection, Δ, and the reverberation time, ) associated with the left cerebral hemisphere, and two are spatial factors [the binaural listening level (LL) and the magnitude of the IACF, the IACC] associated with the right hemisphere. The theory of subjective preference enables us to calculate the acoustical quality at any seat in a proposed concert hall, which leads to a seat selection system.

The temporal treatment enables musicians to choose the music program and/or performing style most suited to a performance in a particular concert hall. Also, for designing the stage enclosure for music performers, a temporal factor is proposed. Acoustical quality at each seating position examined in a real hall is confirmed by both temporal and spatial factors.

Part I - Essentials of modern diplomacy | Pp. 35-38

Flexibility and pragmatism as response to global challenges

Wilfried Bolewski

This chapter describes the theory of subjective preference for the sound field applied to designing concert halls. Special attention is paid to the process of obtaining scientific results, rather than only describing a final design method. Attention has also been given to enhancing satisfaction in the selection of the most preferred seat for each individual in a given hall. We begin with a brief historical review of concert hall acoustics and related fields since 1900.

A neurally grounded theory of subjective preference for the sound field in a concert hall, based on a model of the human auditory–brain system, is described []. Most generally, subjective preference itself is regarded as a primitive response of a living creature and entails judgments that steer an organism in the direction of maintaining its life. Brain activities relating to the scale value of subjective preference, obtained by paired-comparison tests, have been determined. The model represents , relating the autocorrelation function (ACF) mechanism and the interaural cross-correlation function (IACF) mechanism for signals arriving at the two ear entrances. The representations of ACF have a firm neural basis in the temporal patterning signal at each of the two ears, while the IACF describes the correlations between the signals arriving at the two ear entrances. Since Helmholtz, it has been well appreciated that the cochlea carries out a rough spectral analysis of sound signals. However, by the use the of the spectrum of an acoustic signal, it was hard to obtain factors or cues to describe subjective responses directly. The auditory representations from the cochlea to the cortex that have been found to be related to subjective preference in a deep way involve these temporal response patterns, which have a very different character from those related to power spectrum analyses. The scale value of subjective preference of the sound field is well described by four orthogonal factors. Two are temporal factors (the initial delay time between the direct sound and the first reflection, Δ, and the reverberation time, ) associated with the left cerebral hemisphere, and two are spatial factors [the binaural listening level (LL) and the magnitude of the IACF, the IACC] associated with the right hemisphere. The theory of subjective preference enables us to calculate the acoustical quality at any seat in a proposed concert hall, which leads to a seat selection system.

The temporal treatment enables musicians to choose the music program and/or performing style most suited to a performance in a particular concert hall. Also, for designing the stage enclosure for music performers, a temporal factor is proposed. Acoustical quality at each seating position examined in a real hall is confirmed by both temporal and spatial factors.

Part I - Essentials of modern diplomacy | Pp. 39-44

Reciprocity versus communitarianism

Wilfried Bolewski

This chapter describes the theory of subjective preference for the sound field applied to designing concert halls. Special attention is paid to the process of obtaining scientific results, rather than only describing a final design method. Attention has also been given to enhancing satisfaction in the selection of the most preferred seat for each individual in a given hall. We begin with a brief historical review of concert hall acoustics and related fields since 1900.

A neurally grounded theory of subjective preference for the sound field in a concert hall, based on a model of the human auditory–brain system, is described []. Most generally, subjective preference itself is regarded as a primitive response of a living creature and entails judgments that steer an organism in the direction of maintaining its life. Brain activities relating to the scale value of subjective preference, obtained by paired-comparison tests, have been determined. The model represents , relating the autocorrelation function (ACF) mechanism and the interaural cross-correlation function (IACF) mechanism for signals arriving at the two ear entrances. The representations of ACF have a firm neural basis in the temporal patterning signal at each of the two ears, while the IACF describes the correlations between the signals arriving at the two ear entrances. Since Helmholtz, it has been well appreciated that the cochlea carries out a rough spectral analysis of sound signals. However, by the use the of the spectrum of an acoustic signal, it was hard to obtain factors or cues to describe subjective responses directly. The auditory representations from the cochlea to the cortex that have been found to be related to subjective preference in a deep way involve these temporal response patterns, which have a very different character from those related to power spectrum analyses. The scale value of subjective preference of the sound field is well described by four orthogonal factors. Two are temporal factors (the initial delay time between the direct sound and the first reflection, Δ, and the reverberation time, ) associated with the left cerebral hemisphere, and two are spatial factors [the binaural listening level (LL) and the magnitude of the IACF, the IACC] associated with the right hemisphere. The theory of subjective preference enables us to calculate the acoustical quality at any seat in a proposed concert hall, which leads to a seat selection system.

The temporal treatment enables musicians to choose the music program and/or performing style most suited to a performance in a particular concert hall. Also, for designing the stage enclosure for music performers, a temporal factor is proposed. Acoustical quality at each seating position examined in a real hall is confirmed by both temporal and spatial factors.

Part I - Essentials of modern diplomacy | Pp. 45-49

New participants and corporate diplomacy: symbiosis of diplomacy and transnational companies

Wilfried Bolewski

This chapter describes the theory of subjective preference for the sound field applied to designing concert halls. Special attention is paid to the process of obtaining scientific results, rather than only describing a final design method. Attention has also been given to enhancing satisfaction in the selection of the most preferred seat for each individual in a given hall. We begin with a brief historical review of concert hall acoustics and related fields since 1900.

A neurally grounded theory of subjective preference for the sound field in a concert hall, based on a model of the human auditory–brain system, is described []. Most generally, subjective preference itself is regarded as a primitive response of a living creature and entails judgments that steer an organism in the direction of maintaining its life. Brain activities relating to the scale value of subjective preference, obtained by paired-comparison tests, have been determined. The model represents , relating the autocorrelation function (ACF) mechanism and the interaural cross-correlation function (IACF) mechanism for signals arriving at the two ear entrances. The representations of ACF have a firm neural basis in the temporal patterning signal at each of the two ears, while the IACF describes the correlations between the signals arriving at the two ear entrances. Since Helmholtz, it has been well appreciated that the cochlea carries out a rough spectral analysis of sound signals. However, by the use the of the spectrum of an acoustic signal, it was hard to obtain factors or cues to describe subjective responses directly. The auditory representations from the cochlea to the cortex that have been found to be related to subjective preference in a deep way involve these temporal response patterns, which have a very different character from those related to power spectrum analyses. The scale value of subjective preference of the sound field is well described by four orthogonal factors. Two are temporal factors (the initial delay time between the direct sound and the first reflection, Δ, and the reverberation time, ) associated with the left cerebral hemisphere, and two are spatial factors [the binaural listening level (LL) and the magnitude of the IACF, the IACC] associated with the right hemisphere. The theory of subjective preference enables us to calculate the acoustical quality at any seat in a proposed concert hall, which leads to a seat selection system.

The temporal treatment enables musicians to choose the music program and/or performing style most suited to a performance in a particular concert hall. Also, for designing the stage enclosure for music performers, a temporal factor is proposed. Acoustical quality at each seating position examined in a real hall is confirmed by both temporal and spatial factors.

Part II - Transformation of globalized relations and its impact on diplomacy | Pp. 53-67

Citizen diplomats and public relations diplomacy: popularization of diplomacy

Wilfried Bolewski

This chapter describes the theory of subjective preference for the sound field applied to designing concert halls. Special attention is paid to the process of obtaining scientific results, rather than only describing a final design method. Attention has also been given to enhancing satisfaction in the selection of the most preferred seat for each individual in a given hall. We begin with a brief historical review of concert hall acoustics and related fields since 1900.

A neurally grounded theory of subjective preference for the sound field in a concert hall, based on a model of the human auditory–brain system, is described []. Most generally, subjective preference itself is regarded as a primitive response of a living creature and entails judgments that steer an organism in the direction of maintaining its life. Brain activities relating to the scale value of subjective preference, obtained by paired-comparison tests, have been determined. The model represents , relating the autocorrelation function (ACF) mechanism and the interaural cross-correlation function (IACF) mechanism for signals arriving at the two ear entrances. The representations of ACF have a firm neural basis in the temporal patterning signal at each of the two ears, while the IACF describes the correlations between the signals arriving at the two ear entrances. Since Helmholtz, it has been well appreciated that the cochlea carries out a rough spectral analysis of sound signals. However, by the use the of the spectrum of an acoustic signal, it was hard to obtain factors or cues to describe subjective responses directly. The auditory representations from the cochlea to the cortex that have been found to be related to subjective preference in a deep way involve these temporal response patterns, which have a very different character from those related to power spectrum analyses. The scale value of subjective preference of the sound field is well described by four orthogonal factors. Two are temporal factors (the initial delay time between the direct sound and the first reflection, Δ, and the reverberation time, ) associated with the left cerebral hemisphere, and two are spatial factors [the binaural listening level (LL) and the magnitude of the IACF, the IACC] associated with the right hemisphere. The theory of subjective preference enables us to calculate the acoustical quality at any seat in a proposed concert hall, which leads to a seat selection system.

The temporal treatment enables musicians to choose the music program and/or performing style most suited to a performance in a particular concert hall. Also, for designing the stage enclosure for music performers, a temporal factor is proposed. Acoustical quality at each seating position examined in a real hall is confirmed by both temporal and spatial factors.

Part II - Transformation of globalized relations and its impact on diplomacy | Pp. 69-71

The importance of an international diplomatic culture

Wilfried Bolewski

This chapter describes the theory of subjective preference for the sound field applied to designing concert halls. Special attention is paid to the process of obtaining scientific results, rather than only describing a final design method. Attention has also been given to enhancing satisfaction in the selection of the most preferred seat for each individual in a given hall. We begin with a brief historical review of concert hall acoustics and related fields since 1900.

A neurally grounded theory of subjective preference for the sound field in a concert hall, based on a model of the human auditory–brain system, is described []. Most generally, subjective preference itself is regarded as a primitive response of a living creature and entails judgments that steer an organism in the direction of maintaining its life. Brain activities relating to the scale value of subjective preference, obtained by paired-comparison tests, have been determined. The model represents , relating the autocorrelation function (ACF) mechanism and the interaural cross-correlation function (IACF) mechanism for signals arriving at the two ear entrances. The representations of ACF have a firm neural basis in the temporal patterning signal at each of the two ears, while the IACF describes the correlations between the signals arriving at the two ear entrances. Since Helmholtz, it has been well appreciated that the cochlea carries out a rough spectral analysis of sound signals. However, by the use the of the spectrum of an acoustic signal, it was hard to obtain factors or cues to describe subjective responses directly. The auditory representations from the cochlea to the cortex that have been found to be related to subjective preference in a deep way involve these temporal response patterns, which have a very different character from those related to power spectrum analyses. The scale value of subjective preference of the sound field is well described by four orthogonal factors. Two are temporal factors (the initial delay time between the direct sound and the first reflection, Δ, and the reverberation time, ) associated with the left cerebral hemisphere, and two are spatial factors [the binaural listening level (LL) and the magnitude of the IACF, the IACC] associated with the right hemisphere. The theory of subjective preference enables us to calculate the acoustical quality at any seat in a proposed concert hall, which leads to a seat selection system.

The temporal treatment enables musicians to choose the music program and/or performing style most suited to a performance in a particular concert hall. Also, for designing the stage enclosure for music performers, a temporal factor is proposed. Acoustical quality at each seating position examined in a real hall is confirmed by both temporal and spatial factors.

Part III - Towards a diplomatic corporate identity? | Pp. 75-77