Catálogo de publicaciones - libros

Compartir en
redes sociales


Dynamics of Rods

Valery A. Svetlitsky

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-24284-0

ISBN electrónico

978-3-540-26490-3

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2005

Cobertura temática

Tabla de contenidos

Introduction

Valery A. Svetlitsky

In recent years, rotor aeroelasticity has relied more heavily on unsteady aerodynamic modelling to improve predictive capabilities. The major modelling tools are dynamic inflow, lift-deficiency functions, and finite-state modelling. The last of these includes the other two as special cases.

Pp. 1-8

Kinematics

Valery A. Svetlitsky

In recent years, rotor aeroelasticity has relied more heavily on unsteady aerodynamic modelling to improve predictive capabilities. The major modelling tools are dynamic inflow, lift-deficiency functions, and finite-state modelling. The last of these includes the other two as special cases.

Pp. 9-24

General Equations of Motion

Valery A. Svetlitsky

In recent years, rotor aeroelasticity has relied more heavily on unsteady aerodynamic modelling to improve predictive capabilities. The major modelling tools are dynamic inflow, lift-deficiency functions, and finite-state modelling. The last of these includes the other two as special cases.

Pp. 25-56

Small Vibrations of Space-Curved Rods

Valery A. Svetlitsky

In recent years, rotor aeroelasticity has relied more heavily on unsteady aerodynamic modelling to improve predictive capabilities. The major modelling tools are dynamic inflow, lift-deficiency functions, and finite-state modelling. The last of these includes the other two as special cases.

Pp. 57-85

Determination of Eigenvalues and Eigenfunctions

Valery A. Svetlitsky

In recent years, rotor aeroelasticity has relied more heavily on unsteady aerodynamic modelling to improve predictive capabilities. The major modelling tools are dynamic inflow, lift-deficiency functions, and finite-state modelling. The last of these includes the other two as special cases.

Pp. 87-140

Free and Forced Small Vibrations

Valery A. Svetlitsky

In recent years, rotor aeroelasticity has relied more heavily on unsteady aerodynamic modelling to improve predictive capabilities. The major modelling tools are dynamic inflow, lift-deficiency functions, and finite-state modelling. The last of these includes the other two as special cases.

Pp. 141-170

Random Vibrations

Valery A. Svetlitsky

In recent years, rotor aeroelasticity has relied more heavily on unsteady aerodynamic modelling to improve predictive capabilities. The major modelling tools are dynamic inflow, lift-deficiency functions, and finite-state modelling. The last of these includes the other two as special cases.

Pp. 171-198

Straight Rods

Valery A. Svetlitsky

In recent years, rotor aeroelasticity has relied more heavily on unsteady aerodynamic modelling to improve predictive capabilities. The major modelling tools are dynamic inflow, lift-deficiency functions, and finite-state modelling. The last of these includes the other two as special cases.

Pp. 199-306

Dynamics of Rods Interacting with Airflow or Liquid Flow

Valery A. Svetlitsky

In recent years, rotor aeroelasticity has relied more heavily on unsteady aerodynamic modelling to improve predictive capabilities. The major modelling tools are dynamic inflow, lift-deficiency functions, and finite-state modelling. The last of these includes the other two as special cases.

Pp. 307-387

Rods Exerted by an Internal Flow of Liquid

Valery A. Svetlitsky

In recent years, rotor aeroelasticity has relied more heavily on unsteady aerodynamic modelling to improve predictive capabilities. The major modelling tools are dynamic inflow, lift-deficiency functions, and finite-state modelling. The last of these includes the other two as special cases.

Pp. 389-409