Catálogo de publicaciones - libros

Compartir en
redes sociales


Aquinas and maimonides on the possibility of the knowledge of god: An examination of the quaestio de attributis

Mercedes Rubio

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-4020-4720-6

ISBN electrónico

978-1-4020-4747-3

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer 2006

Tabla de contenidos

The Dispute on the Divine Attributes

Mercedes Rubio

This paper presents a novel method for constructing controllers for a class of single-input multiple-output (SIMO) linear parameter varying (LPV) systems. This class of systems encompasses many physical systems, in particular systems where individual components vary with time, and is therefore of significant practical relevance to control designers. The control design presented in this paper has the properties that the system matrix of the closed loop is multi-affine in the various scalar parameters, and that the resulting controller ensures a certain degree of stability for the closed loop even when the parameters are varying, with the degree of stability related directly to a bound on the average rate of allowable parameter variations. Thus, if knowledge of the parameter variations is available, the conservativeness of the design can be kept at a minimum. The construction of the controller is formulated as a standard linear time-invariant (LTI) design combined with a set of linear matrix inequalities, which can be solved efficiently with software tools. The design procedure is illustrated by a numerical example.

Pp. 15-64

Aquinas and Maimonides on the Divine Names

Mercedes Rubio

This paper presents a novel method for constructing controllers for a class of single-input multiple-output (SIMO) linear parameter varying (LPV) systems. This class of systems encompasses many physical systems, in particular systems where individual components vary with time, and is therefore of significant practical relevance to control designers. The control design presented in this paper has the properties that the system matrix of the closed loop is multi-affine in the various scalar parameters, and that the resulting controller ensures a certain degree of stability for the closed loop even when the parameters are varying, with the degree of stability related directly to a bound on the average rate of allowable parameter variations. Thus, if knowledge of the parameter variations is available, the conservativeness of the design can be kept at a minimum. The construction of the controller is formulated as a standard linear time-invariant (LTI) design combined with a set of linear matrix inequalities, which can be solved efficiently with software tools. The design procedure is illustrated by a numerical example.

Pp. 65-126

The and

Mercedes Rubio

This paper presents a novel method for constructing controllers for a class of single-input multiple-output (SIMO) linear parameter varying (LPV) systems. This class of systems encompasses many physical systems, in particular systems where individual components vary with time, and is therefore of significant practical relevance to control designers. The control design presented in this paper has the properties that the system matrix of the closed loop is multi-affine in the various scalar parameters, and that the resulting controller ensures a certain degree of stability for the closed loop even when the parameters are varying, with the degree of stability related directly to a bound on the average rate of allowable parameter variations. Thus, if knowledge of the parameter variations is available, the conservativeness of the design can be kept at a minimum. The construction of the controller is formulated as a standard linear time-invariant (LTI) design combined with a set of linear matrix inequalities, which can be solved efficiently with software tools. The design procedure is illustrated by a numerical example.

Pp. 127-160

The and the Limits of Natural Knowledge

Mercedes Rubio

This paper presents a novel method for constructing controllers for a class of single-input multiple-output (SIMO) linear parameter varying (LPV) systems. This class of systems encompasses many physical systems, in particular systems where individual components vary with time, and is therefore of significant practical relevance to control designers. The control design presented in this paper has the properties that the system matrix of the closed loop is multi-affine in the various scalar parameters, and that the resulting controller ensures a certain degree of stability for the closed loop even when the parameters are varying, with the degree of stability related directly to a bound on the average rate of allowable parameter variations. Thus, if knowledge of the parameter variations is available, the conservativeness of the design can be kept at a minimum. The construction of the controller is formulated as a standard linear time-invariant (LTI) design combined with a set of linear matrix inequalities, which can be solved efficiently with software tools. The design procedure is illustrated by a numerical example.

Pp. 161-209

The Knowledge of the Existence of God

Mercedes Rubio

This paper presents a novel method for constructing controllers for a class of single-input multiple-output (SIMO) linear parameter varying (LPV) systems. This class of systems encompasses many physical systems, in particular systems where individual components vary with time, and is therefore of significant practical relevance to control designers. The control design presented in this paper has the properties that the system matrix of the closed loop is multi-affine in the various scalar parameters, and that the resulting controller ensures a certain degree of stability for the closed loop even when the parameters are varying, with the degree of stability related directly to a bound on the average rate of allowable parameter variations. Thus, if knowledge of the parameter variations is available, the conservativeness of the design can be kept at a minimum. The construction of the controller is formulated as a standard linear time-invariant (LTI) design combined with a set of linear matrix inequalities, which can be solved efficiently with software tools. The design procedure is illustrated by a numerical example.

Pp. 210-244