Catálogo de publicaciones - libros
When There Was No Money: Building ACLEDA Bank in Cambodia's Evolving Financial Sector
Heather A. Clark
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-28876-3
ISBN electrónico
978-3-540-28877-0
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Springer Berlin · Heidelberg 2006
Cobertura temática
Tabla de contenidos
Introduction
Heather A. Clark
Nitric oxide (NO) has become recognized as a key signaling molecule in plants over the last few years, but still little is known about the way in which NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation – the covalent attachment of NO to the sulfhydryl group of cysteine residues – to be one of the dominant regulation mechanisms for many animal proteins. This reversible protein modification is an important posttranslational, redox-based regulation mechanism for many proteins of different classes in animals. For plants, however, the importance of protein S-nitrosylation remained to be elucidated.
This chapter will discuss the chemistry of S-nitrosothiol formation and the release of NO from S-nitrosylated cysteine residues, as well as the specificity and regulation of S-nitrosylation. Furthermore, the identification of plant proteins as candidates for this type of protein modification, and the physiological functions of protein S-nitrosylation in plants are described.
- Introduction | Pp. 1-8
Prologue
Heather A. Clark
Nitric oxide (NO) has become recognized as a key signaling molecule in plants over the last few years, but still little is known about the way in which NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation – the covalent attachment of NO to the sulfhydryl group of cysteine residues – to be one of the dominant regulation mechanisms for many animal proteins. This reversible protein modification is an important posttranslational, redox-based regulation mechanism for many proteins of different classes in animals. For plants, however, the importance of protein S-nitrosylation remained to be elucidated.
This chapter will discuss the chemistry of S-nitrosothiol formation and the release of NO from S-nitrosylated cysteine residues, as well as the specificity and regulation of S-nitrosylation. Furthermore, the identification of plant proteins as candidates for this type of protein modification, and the physiological functions of protein S-nitrosylation in plants are described.
Part I - Heritage | Pp. 11-13
Cambodia and the Banking System
Heather A. Clark
Nitric oxide (NO) has become recognized as a key signaling molecule in plants over the last few years, but still little is known about the way in which NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation – the covalent attachment of NO to the sulfhydryl group of cysteine residues – to be one of the dominant regulation mechanisms for many animal proteins. This reversible protein modification is an important posttranslational, redox-based regulation mechanism for many proteins of different classes in animals. For plants, however, the importance of protein S-nitrosylation remained to be elucidated.
This chapter will discuss the chemistry of S-nitrosothiol formation and the release of NO from S-nitrosylated cysteine residues, as well as the specificity and regulation of S-nitrosylation. Furthermore, the identification of plant proteins as candidates for this type of protein modification, and the physiological functions of protein S-nitrosylation in plants are described.
Part I - Heritage | Pp. 15-23
The Accidental Organization
Heather A. Clark
Nitric oxide (NO) has become recognized as a key signaling molecule in plants over the last few years, but still little is known about the way in which NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation – the covalent attachment of NO to the sulfhydryl group of cysteine residues – to be one of the dominant regulation mechanisms for many animal proteins. This reversible protein modification is an important posttranslational, redox-based regulation mechanism for many proteins of different classes in animals. For plants, however, the importance of protein S-nitrosylation remained to be elucidated.
This chapter will discuss the chemistry of S-nitrosothiol formation and the release of NO from S-nitrosylated cysteine residues, as well as the specificity and regulation of S-nitrosylation. Furthermore, the identification of plant proteins as candidates for this type of protein modification, and the physiological functions of protein S-nitrosylation in plants are described.
Part I - Heritage | Pp. 25-34
Prologue
Heather A. Clark
Nitric oxide (NO) has become recognized as a key signaling molecule in plants over the last few years, but still little is known about the way in which NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation – the covalent attachment of NO to the sulfhydryl group of cysteine residues – to be one of the dominant regulation mechanisms for many animal proteins. This reversible protein modification is an important posttranslational, redox-based regulation mechanism for many proteins of different classes in animals. For plants, however, the importance of protein S-nitrosylation remained to be elucidated.
This chapter will discuss the chemistry of S-nitrosothiol formation and the release of NO from S-nitrosylated cysteine residues, as well as the specificity and regulation of S-nitrosylation. Furthermore, the identification of plant proteins as candidates for this type of protein modification, and the physiological functions of protein S-nitrosylation in plants are described.
Part II - Discovery | Pp. 37-39
Exploring the “Marketspace”
Heather A. Clark
Nitric oxide (NO) has become recognized as a key signaling molecule in plants over the last few years, but still little is known about the way in which NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation – the covalent attachment of NO to the sulfhydryl group of cysteine residues – to be one of the dominant regulation mechanisms for many animal proteins. This reversible protein modification is an important posttranslational, redox-based regulation mechanism for many proteins of different classes in animals. For plants, however, the importance of protein S-nitrosylation remained to be elucidated.
This chapter will discuss the chemistry of S-nitrosothiol formation and the release of NO from S-nitrosylated cysteine residues, as well as the specificity and regulation of S-nitrosylation. Furthermore, the identification of plant proteins as candidates for this type of protein modification, and the physiological functions of protein S-nitrosylation in plants are described.
Part II - Discovery | Pp. 41-52
Crossroads
Heather A. Clark
Nitric oxide (NO) has become recognized as a key signaling molecule in plants over the last few years, but still little is known about the way in which NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation – the covalent attachment of NO to the sulfhydryl group of cysteine residues – to be one of the dominant regulation mechanisms for many animal proteins. This reversible protein modification is an important posttranslational, redox-based regulation mechanism for many proteins of different classes in animals. For plants, however, the importance of protein S-nitrosylation remained to be elucidated.
This chapter will discuss the chemistry of S-nitrosothiol formation and the release of NO from S-nitrosylated cysteine residues, as well as the specificity and regulation of S-nitrosylation. Furthermore, the identification of plant proteins as candidates for this type of protein modification, and the physiological functions of protein S-nitrosylation in plants are described.
Part II - Discovery | Pp. 53-70
Latitude to Grow
Heather A. Clark
Nitric oxide (NO) has become recognized as a key signaling molecule in plants over the last few years, but still little is known about the way in which NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation – the covalent attachment of NO to the sulfhydryl group of cysteine residues – to be one of the dominant regulation mechanisms for many animal proteins. This reversible protein modification is an important posttranslational, redox-based regulation mechanism for many proteins of different classes in animals. For plants, however, the importance of protein S-nitrosylation remained to be elucidated.
This chapter will discuss the chemistry of S-nitrosothiol formation and the release of NO from S-nitrosylated cysteine residues, as well as the specificity and regulation of S-nitrosylation. Furthermore, the identification of plant proteins as candidates for this type of protein modification, and the physiological functions of protein S-nitrosylation in plants are described.
Part II - Discovery | Pp. 71-85
Prologue
Heather A. Clark
Nitric oxide (NO) has become recognized as a key signaling molecule in plants over the last few years, but still little is known about the way in which NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation – the covalent attachment of NO to the sulfhydryl group of cysteine residues – to be one of the dominant regulation mechanisms for many animal proteins. This reversible protein modification is an important posttranslational, redox-based regulation mechanism for many proteins of different classes in animals. For plants, however, the importance of protein S-nitrosylation remained to be elucidated.
This chapter will discuss the chemistry of S-nitrosothiol formation and the release of NO from S-nitrosylated cysteine residues, as well as the specificity and regulation of S-nitrosylation. Furthermore, the identification of plant proteins as candidates for this type of protein modification, and the physiological functions of protein S-nitrosylation in plants are described.
Part III - Velocity | Pp. 89-93
Confidence: The “Flywheel” Turns
Heather A. Clark
Nitric oxide (NO) has become recognized as a key signaling molecule in plants over the last few years, but still little is known about the way in which NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation – the covalent attachment of NO to the sulfhydryl group of cysteine residues – to be one of the dominant regulation mechanisms for many animal proteins. This reversible protein modification is an important posttranslational, redox-based regulation mechanism for many proteins of different classes in animals. For plants, however, the importance of protein S-nitrosylation remained to be elucidated.
This chapter will discuss the chemistry of S-nitrosothiol formation and the release of NO from S-nitrosylated cysteine residues, as well as the specificity and regulation of S-nitrosylation. Furthermore, the identification of plant proteins as candidates for this type of protein modification, and the physiological functions of protein S-nitrosylation in plants are described.
Part III - Velocity | Pp. 95-114