Catálogo de publicaciones - libros

Compartir en
redes sociales


Constitutionalism and Legal Reasoning

Massimo La Torre

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2007 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-4020-5594-2

ISBN electrónico

978-1-4020-5595-9

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer 2007

Cobertura temática

Tabla de contenidos

Law as Constitution

Massimo La Torre

Nitric oxide (NO) has become recognized as a key signaling molecule in plants over the last few years, but still little is known about the way in which NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation – the covalent attachment of NO to the sulfhydryl group of cysteine residues – to be one of the dominant regulation mechanisms for many animal proteins. This reversible protein modification is an important posttranslational, redox-based regulation mechanism for many proteins of different classes in animals. For plants, however, the importance of protein S-nitrosylation remained to be elucidated.

This chapter will discuss the chemistry of S-nitrosothiol formation and the release of NO from S-nitrosylated cysteine residues, as well as the specificity and regulation of S-nitrosylation. Furthermore, the identification of plant proteins as candidates for this type of protein modification, and the physiological functions of protein S-nitrosylation in plants are described.

Pp. 1-41

Legal Argumentation and Concepts of Law

Massimo La Torre

Nitric oxide (NO) has become recognized as a key signaling molecule in plants over the last few years, but still little is known about the way in which NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation – the covalent attachment of NO to the sulfhydryl group of cysteine residues – to be one of the dominant regulation mechanisms for many animal proteins. This reversible protein modification is an important posttranslational, redox-based regulation mechanism for many proteins of different classes in animals. For plants, however, the importance of protein S-nitrosylation remained to be elucidated.

This chapter will discuss the chemistry of S-nitrosothiol formation and the release of NO from S-nitrosylated cysteine residues, as well as the specificity and regulation of S-nitrosylation. Furthermore, the identification of plant proteins as candidates for this type of protein modification, and the physiological functions of protein S-nitrosylation in plants are described.

Pp. 43-89

The Practice of Law and Legal Ethics

Massimo La Torre

Nitric oxide (NO) has become recognized as a key signaling molecule in plants over the last few years, but still little is known about the way in which NO regulates different events in plants. Analyses of NO-dependent processes in animal systems have demonstrated protein S-nitrosylation – the covalent attachment of NO to the sulfhydryl group of cysteine residues – to be one of the dominant regulation mechanisms for many animal proteins. This reversible protein modification is an important posttranslational, redox-based regulation mechanism for many proteins of different classes in animals. For plants, however, the importance of protein S-nitrosylation remained to be elucidated.

This chapter will discuss the chemistry of S-nitrosothiol formation and the release of NO from S-nitrosylated cysteine residues, as well as the specificity and regulation of S-nitrosylation. Furthermore, the identification of plant proteins as candidates for this type of protein modification, and the physiological functions of protein S-nitrosylation in plants are described.

Pp. 91-129