Catálogo de publicaciones - libros

Compartir en
redes sociales


Manual of Diagnostic Ultrasound in Infectious Tropical Diseases

Harald T. Lutz ; Hassen A. Gharbi (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Internal Medicine; Ultrasound; Tropical Medicine

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-24446-2

ISBN electrónico

978-3-540-29950-9

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Medizin Verlag Heidelberg 2006

Cobertura temática

Tabla de contenidos

Basics of Ultrasound

Harald T. Lutz; Hassen A. Gharbi (eds.)

We present an overall impression of the present state of knowledge on the formation, via a modified Stranski-Krastanov growth mode, of InAs quantum dots (QDs) on GaAs substrates. We will begin with the substrate orientation and surface reconstruction specificity of QD formation, which demonstrates that QDs are the exception rather than the rule in this system, with the implication that a second process, in addition to strain relaxation, is involved in the driving force. We then discuss the formation of an alloy wetting layer, and although it may not be unique to growth on the GaAs(001) c(4 × 4) surface, it is very much more marked than on any other. This is an important effect, in that QD formation is effectively limited to the same surface reconstruction. The next stage involves this formation process and we will review the experimental evidence, including dot composition, size (volume) distribution (including scaling behaviour), and two-dimensional to three-dimensional transition effects, with some comments on possible experimental artefacts in this area. We conclude with some comments on QD shape, based mainly on reflection high energy electron diffraction (RHEED) results, but including a comparison with results from transmission electron microscopy (TEM) and scanning tunnelling microscopy (STM).

Pp. 1-19

Typical Sonographic Findings in Inflammatory Disease

Harald T. Lutz; Hassen A. Gharbi (eds.)

We present an overall impression of the present state of knowledge on the formation, via a modified Stranski-Krastanov growth mode, of InAs quantum dots (QDs) on GaAs substrates. We will begin with the substrate orientation and surface reconstruction specificity of QD formation, which demonstrates that QDs are the exception rather than the rule in this system, with the implication that a second process, in addition to strain relaxation, is involved in the driving force. We then discuss the formation of an alloy wetting layer, and although it may not be unique to growth on the GaAs(001) c(4 × 4) surface, it is very much more marked than on any other. This is an important effect, in that QD formation is effectively limited to the same surface reconstruction. The next stage involves this formation process and we will review the experimental evidence, including dot composition, size (volume) distribution (including scaling behaviour), and two-dimensional to three-dimensional transition effects, with some comments on possible experimental artefacts in this area. We conclude with some comments on QD shape, based mainly on reflection high energy electron diffraction (RHEED) results, but including a comparison with results from transmission electron microscopy (TEM) and scanning tunnelling microscopy (STM).

Pp. 21-62

Ultrasound Diagnosis of Special Infectious and Parasitic Diseases

Harald T. Lutz; Hassen A. Gharbi (eds.)

We present an overall impression of the present state of knowledge on the formation, via a modified Stranski-Krastanov growth mode, of InAs quantum dots (QDs) on GaAs substrates. We will begin with the substrate orientation and surface reconstruction specificity of QD formation, which demonstrates that QDs are the exception rather than the rule in this system, with the implication that a second process, in addition to strain relaxation, is involved in the driving force. We then discuss the formation of an alloy wetting layer, and although it may not be unique to growth on the GaAs(001) c(4 × 4) surface, it is very much more marked than on any other. This is an important effect, in that QD formation is effectively limited to the same surface reconstruction. The next stage involves this formation process and we will review the experimental evidence, including dot composition, size (volume) distribution (including scaling behaviour), and two-dimensional to three-dimensional transition effects, with some comments on possible experimental artefacts in this area. We conclude with some comments on QD shape, based mainly on reflection high energy electron diffraction (RHEED) results, but including a comparison with results from transmission electron microscopy (TEM) and scanning tunnelling microscopy (STM).

Pp. 63-157

Ultrasound Features in Childhood Infection

Harald T. Lutz; Hassen A. Gharbi (eds.)

We present an overall impression of the present state of knowledge on the formation, via a modified Stranski-Krastanov growth mode, of InAs quantum dots (QDs) on GaAs substrates. We will begin with the substrate orientation and surface reconstruction specificity of QD formation, which demonstrates that QDs are the exception rather than the rule in this system, with the implication that a second process, in addition to strain relaxation, is involved in the driving force. We then discuss the formation of an alloy wetting layer, and although it may not be unique to growth on the GaAs(001) c(4 × 4) surface, it is very much more marked than on any other. This is an important effect, in that QD formation is effectively limited to the same surface reconstruction. The next stage involves this formation process and we will review the experimental evidence, including dot composition, size (volume) distribution (including scaling behaviour), and two-dimensional to three-dimensional transition effects, with some comments on possible experimental artefacts in this area. We conclude with some comments on QD shape, based mainly on reflection high energy electron diffraction (RHEED) results, but including a comparison with results from transmission electron microscopy (TEM) and scanning tunnelling microscopy (STM).

Pp. 159-167