Catálogo de publicaciones - libros
Manual of Diagnostic Ultrasound in Infectious Tropical Diseases
Harald T. Lutz ; Hassen A. Gharbi (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Internal Medicine; Ultrasound; Tropical Medicine
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-24446-2
ISBN electrónico
978-3-540-29950-9
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Springer Medizin Verlag Heidelberg 2006
Cobertura temática
Tabla de contenidos
Basics of Ultrasound
Harald T. Lutz; Hassen A. Gharbi (eds.)
We present an overall impression of the present state of knowledge on the formation, via a modified Stranski-Krastanov growth mode, of InAs quantum dots (QDs) on GaAs substrates. We will begin with the substrate orientation and surface reconstruction specificity of QD formation, which demonstrates that QDs are the exception rather than the rule in this system, with the implication that a second process, in addition to strain relaxation, is involved in the driving force. We then discuss the formation of an alloy wetting layer, and although it may not be unique to growth on the GaAs(001) c(4 × 4) surface, it is very much more marked than on any other. This is an important effect, in that QD formation is effectively limited to the same surface reconstruction. The next stage involves this formation process and we will review the experimental evidence, including dot composition, size (volume) distribution (including scaling behaviour), and two-dimensional to three-dimensional transition effects, with some comments on possible experimental artefacts in this area. We conclude with some comments on QD shape, based mainly on reflection high energy electron diffraction (RHEED) results, but including a comparison with results from transmission electron microscopy (TEM) and scanning tunnelling microscopy (STM).
Pp. 1-19
Typical Sonographic Findings in Inflammatory Disease
Harald T. Lutz; Hassen A. Gharbi (eds.)
We present an overall impression of the present state of knowledge on the formation, via a modified Stranski-Krastanov growth mode, of InAs quantum dots (QDs) on GaAs substrates. We will begin with the substrate orientation and surface reconstruction specificity of QD formation, which demonstrates that QDs are the exception rather than the rule in this system, with the implication that a second process, in addition to strain relaxation, is involved in the driving force. We then discuss the formation of an alloy wetting layer, and although it may not be unique to growth on the GaAs(001) c(4 × 4) surface, it is very much more marked than on any other. This is an important effect, in that QD formation is effectively limited to the same surface reconstruction. The next stage involves this formation process and we will review the experimental evidence, including dot composition, size (volume) distribution (including scaling behaviour), and two-dimensional to three-dimensional transition effects, with some comments on possible experimental artefacts in this area. We conclude with some comments on QD shape, based mainly on reflection high energy electron diffraction (RHEED) results, but including a comparison with results from transmission electron microscopy (TEM) and scanning tunnelling microscopy (STM).
Pp. 21-62
Ultrasound Diagnosis of Special Infectious and Parasitic Diseases
Harald T. Lutz; Hassen A. Gharbi (eds.)
We present an overall impression of the present state of knowledge on the formation, via a modified Stranski-Krastanov growth mode, of InAs quantum dots (QDs) on GaAs substrates. We will begin with the substrate orientation and surface reconstruction specificity of QD formation, which demonstrates that QDs are the exception rather than the rule in this system, with the implication that a second process, in addition to strain relaxation, is involved in the driving force. We then discuss the formation of an alloy wetting layer, and although it may not be unique to growth on the GaAs(001) c(4 × 4) surface, it is very much more marked than on any other. This is an important effect, in that QD formation is effectively limited to the same surface reconstruction. The next stage involves this formation process and we will review the experimental evidence, including dot composition, size (volume) distribution (including scaling behaviour), and two-dimensional to three-dimensional transition effects, with some comments on possible experimental artefacts in this area. We conclude with some comments on QD shape, based mainly on reflection high energy electron diffraction (RHEED) results, but including a comparison with results from transmission electron microscopy (TEM) and scanning tunnelling microscopy (STM).
Pp. 63-157
Ultrasound Features in Childhood Infection
Harald T. Lutz; Hassen A. Gharbi (eds.)
We present an overall impression of the present state of knowledge on the formation, via a modified Stranski-Krastanov growth mode, of InAs quantum dots (QDs) on GaAs substrates. We will begin with the substrate orientation and surface reconstruction specificity of QD formation, which demonstrates that QDs are the exception rather than the rule in this system, with the implication that a second process, in addition to strain relaxation, is involved in the driving force. We then discuss the formation of an alloy wetting layer, and although it may not be unique to growth on the GaAs(001) c(4 × 4) surface, it is very much more marked than on any other. This is an important effect, in that QD formation is effectively limited to the same surface reconstruction. The next stage involves this formation process and we will review the experimental evidence, including dot composition, size (volume) distribution (including scaling behaviour), and two-dimensional to three-dimensional transition effects, with some comments on possible experimental artefacts in this area. We conclude with some comments on QD shape, based mainly on reflection high energy electron diffraction (RHEED) results, but including a comparison with results from transmission electron microscopy (TEM) and scanning tunnelling microscopy (STM).
Pp. 159-167