Catálogo de publicaciones - libros
Simulation with Entropy Thermodynamics: Understanding Matter and Systems with Bondgraphs
Jean Thoma Gianni Mocellin
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Theoretical and Applied Mechanics
Disponibilidad
| Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
|---|---|---|---|---|
| No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-32798-1
ISBN electrónico
978-3-540-32851-3
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2006
Cobertura temática
Tabla de contenidos
Thermodynamics as a Universal Science
Jean Thoma; Gianni Mocellin
The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.
As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.
Pp. 1-21
Frictions and Irreversibilities
Jean Thoma; Gianni Mocellin
The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.
As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.
Pp. 23-31
MassFlows
Jean Thoma; Gianni Mocellin
The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.
As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.
Pp. 33-55
Chemical Reactions and Osmosis
Jean Thoma; Gianni Mocellin
The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.
As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.
Pp. 57-78
Entropy and Information Theory
Jean Thoma; Gianni Mocellin
The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.
As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.
Pp. 79-94