Catálogo de publicaciones - libros

Compartir en
redes sociales


Simulation with Entropy Thermodynamics: Understanding Matter and Systems with Bondgraphs

Jean Thoma Gianni Mocellin

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Theoretical and Applied Mechanics

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-32798-1

ISBN electrónico

978-3-540-32851-3

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2006

Cobertura temática

Tabla de contenidos

Thermodynamics as a Universal Science

Jean Thoma; Gianni Mocellin

The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.

As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.

Pp. 1-21

Frictions and Irreversibilities

Jean Thoma; Gianni Mocellin

The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.

As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.

Pp. 23-31

MassFlows

Jean Thoma; Gianni Mocellin

The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.

As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.

Pp. 33-55

Chemical Reactions and Osmosis

Jean Thoma; Gianni Mocellin

The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.

As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.

Pp. 57-78

Entropy and Information Theory

Jean Thoma; Gianni Mocellin

The classical invariant theory from the 19th century is used to determine a complete system of 3rd order invariants on a surface in three-space. The invariant ring has 18 generators and the ideal of syzygies has 65 generators. The invariants are expressed as polynomials in the components of the first fundamental form, the second fundamental form and the covariant derivative of the latter, or in the case of an implicitly defined surface — = (0) — as polynomials in the partial derivatives of up to order three.

As an application some commonly used fairings measures are written in invariant form. It is shown that the ridges and the subparabolic curve of a surface are the zero set of invariant functions and it is finally shown that the Darboux classification of umbilical points can be given in terms of two invariants.

Pp. 79-94