Catálogo de publicaciones - libros

Compartir en
redes sociales


Quantum Independent Increment Processes I: From Classical Probability to Quantum Stochastic Calculus

Michael Schürmann ; Uwe Franz (eds.)

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-24406-6

ISBN electrónico

978-3-540-31450-9

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2005

Tabla de contenidos

Lévy Processes in Euclidean Spaces and Groups

David Applebaum

“.”

Pp. 1-98

Locally compact quantum groups

Johan Kustermans

These lecture notes are intended as an introduction to the theory of locally compact quantum groups that are studied in the framework of operator algebras, i.e. C-algebras and von Neumann algebras. The presentation revolves around the definition of a locally compact quantum group as given in [KuV00a] and [KuV03].

Pp. 99-180

Quantum Stochastic Analysis – an Introduction

J. Martin Lindsay

By is meant the analysis arising from the natural operator filtration of a symmetric Fock space over a Hilbert space of squareintegrable vector-valued functions on the positive half-line. Current texts on quantum stochastics are the monograph [Par], the lecture notes [Mey], the St. Flour lectures [Bia], and the Grenoble lectures [Hud]. Excellent background together with a wealth of examples may be found in these, each of which has its own emphasis. The point of view of these notes is closest to [Bia], as far as the basic construction of quantum stochastic integrals goes. Beyond that, particular emphasis is given to .

Pp. 181-271

Dilations, Cocycles and Product Systems

B. V. Rajarama Bhat

Throughout these lectures B(H) will denote the von Neumann algebra of all bounded operators on a Hilbert space H. All our Hilbert spaces will be complex with an inner product 〈.,.〉 which is anti-linear in the first variable. Usually we restrict ourselves to separable Hilbert spaces.

Pp. 273-291