Catálogo de publicaciones - libros
Quantum Independent Increment Processes I: From Classical Probability to Quantum Stochastic Calculus
Michael Schürmann ; Uwe Franz (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
No disponibles.
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-24406-6
ISBN electrónico
978-3-540-31450-9
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2005
Cobertura temática
Tabla de contenidos
doi: 10.1007/11376569_2
Locally compact quantum groups
Johan Kustermans
These lecture notes are intended as an introduction to the theory of locally compact quantum groups that are studied in the framework of operator algebras, i.e. C-algebras and von Neumann algebras. The presentation revolves around the definition of a locally compact quantum group as given in [KuV00a] and [KuV03].
Pp. 99-180
doi: 10.1007/11376569_3
Quantum Stochastic Analysis – an Introduction
J. Martin Lindsay
By is meant the analysis arising from the natural operator filtration of a symmetric Fock space over a Hilbert space of squareintegrable vector-valued functions on the positive half-line. Current texts on quantum stochastics are the monograph [Par], the lecture notes [Mey], the St. Flour lectures [Bia], and the Grenoble lectures [Hud]. Excellent background together with a wealth of examples may be found in these, each of which has its own emphasis. The point of view of these notes is closest to [Bia], as far as the basic construction of quantum stochastic integrals goes. Beyond that, particular emphasis is given to .
Pp. 181-271
doi: 10.1007/11376569_4
Dilations, Cocycles and Product Systems
B. V. Rajarama Bhat
Throughout these lectures B(H) will denote the von Neumann algebra of all bounded operators on a Hilbert space H. All our Hilbert spaces will be complex with an inner product 〈.,.〉 which is anti-linear in the first variable. Usually we restrict ourselves to separable Hilbert spaces.
Pp. 273-291