Catálogo de publicaciones - libros

Compartir en
redes sociales


Optical Data Storage: Phase-Change Media and Recording

Erwin R. Meinders Andrei V. Mijiritskii Liesbeth van Pieterson Matthias Wuttig

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

No disponibles.

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-4020-4216-4

ISBN electrónico

978-1-4020-4217-1

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer 2006

Tabla de contenidos

Introduction

Erwin R. Meinders; Andrei V. Mijiritskii; Liesbeth van Pieterson; Matthias Wuttig

A theoretical framework for modeling the elastoplastic constitutive behavior of unsaturated soils is presented. By combining the theory of mixtures with interfaces (TMI) and continuum theory of plasticity, a dissipation mechanism associated with capillary hysteresis is identified. We show that the plastic deformation of the soil matrix can be described by using a pseudo effective stress tensor. In this context the plastic deformation and capillary hysteresis are consistently simulated in a hierarchical and coupled manner. The proposed framework preserves all the advantages of those models based on the effective stress concept, two stress state variables, and mixture theory, while excluding their drawbacks.

Pp. 1-22

Theoretical aspects of phase-change alloys

Erwin R. Meinders; Andrei V. Mijiritskii; Liesbeth van Pieterson; Matthias Wuttig

A theoretical framework for modeling the elastoplastic constitutive behavior of unsaturated soils is presented. By combining the theory of mixtures with interfaces (TMI) and continuum theory of plasticity, a dissipation mechanism associated with capillary hysteresis is identified. We show that the plastic deformation of the soil matrix can be described by using a pseudo effective stress tensor. In this context the plastic deformation and capillary hysteresis are consistently simulated in a hierarchical and coupled manner. The proposed framework preserves all the advantages of those models based on the effective stress concept, two stress state variables, and mixture theory, while excluding their drawbacks.

Pp. 23-50

Thermal modelling of phase-change recording

Erwin R. Meinders; Andrei V. Mijiritskii; Liesbeth van Pieterson; Matthias Wuttig

A theoretical framework for modeling the elastoplastic constitutive behavior of unsaturated soils is presented. By combining the theory of mixtures with interfaces (TMI) and continuum theory of plasticity, a dissipation mechanism associated with capillary hysteresis is identified. We show that the plastic deformation of the soil matrix can be described by using a pseudo effective stress tensor. In this context the plastic deformation and capillary hysteresis are consistently simulated in a hierarchical and coupled manner. The proposed framework preserves all the advantages of those models based on the effective stress concept, two stress state variables, and mixture theory, while excluding their drawbacks.

Pp. 51-92

Data recording characteristics

Erwin R. Meinders; Andrei V. Mijiritskii; Liesbeth van Pieterson; Matthias Wuttig

A theoretical framework for modeling the elastoplastic constitutive behavior of unsaturated soils is presented. By combining the theory of mixtures with interfaces (TMI) and continuum theory of plasticity, a dissipation mechanism associated with capillary hysteresis is identified. We show that the plastic deformation of the soil matrix can be described by using a pseudo effective stress tensor. In this context the plastic deformation and capillary hysteresis are consistently simulated in a hierarchical and coupled manner. The proposed framework preserves all the advantages of those models based on the effective stress concept, two stress state variables, and mixture theory, while excluding their drawbacks.

Pp. 93-122

Recording media

Erwin R. Meinders; Andrei V. Mijiritskii; Liesbeth van Pieterson; Matthias Wuttig

A theoretical framework for modeling the elastoplastic constitutive behavior of unsaturated soils is presented. By combining the theory of mixtures with interfaces (TMI) and continuum theory of plasticity, a dissipation mechanism associated with capillary hysteresis is identified. We show that the plastic deformation of the soil matrix can be described by using a pseudo effective stress tensor. In this context the plastic deformation and capillary hysteresis are consistently simulated in a hierarchical and coupled manner. The proposed framework preserves all the advantages of those models based on the effective stress concept, two stress state variables, and mixture theory, while excluding their drawbacks.

Pp. 123-172