Catálogo de publicaciones - libros
Algebraic Geometry and Geometric Modeling
Mohamed Elkadi ; Bernard Mourrain ; Ragni Piene (eds.)
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Algebraic Geometry; Mathematical Modeling and Industrial Mathematics; Math Applications in Computer Science; Appl.Mathematics/Computational Methods of Engineering
Disponibilidad
Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
---|---|---|---|---|
No detectada | 2006 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-3-540-33274-9
ISBN electrónico
978-3-540-33275-6
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2006
Información sobre derechos de publicación
© Springer-Verlag Berlin Heidelberg 2006
Cobertura temática
Tabla de contenidos
Algebraic Geometry and Geometric Modeling
Mohamed Elkadi; Bernard Mourrain; Ragni Piene (eds.)
Pp. No disponible
Algebraic geometry and geometric modeling: insight and computation
Ron Goldman
In Chapters 7 and 8we invested a good deal of time and energy in developing the many results we need from differential geometry. The time has now come to begin to reap the benefits of our investment, while at the same time developing some themes a little further for later exploitation. This chapter focuses on the celebrated volume-of-tubes formula of Wey1 [73, 168], which expresses the Lebesgue volume of a tube of radius ρ around a set embedded in ℝ or S(ℝ{sl}) in terms of the radius of the tube1 and the Lipschitz–Killing curvatures of (see Theorem 10.5.6). It is an interesting fact, particularly in view of the fact that this is a book about probability that is claimed to have applications to statistics, and despite the fact thatWeyl’s formula is today the basis of a large literature in geometry, that the origins of the volume-of-tubes formulas were inspired by a statistical problem. This problem, along with its solution due to Hotelling [79], were related to regression analysis and involved the one-dimensional volume-of-tubes problem on a sphere, not unrelated to the computation we shall do in a moment.
Pp. 1-22
Implicitization using approximation complexes
Marc Chardin
In Chapters 7 and 8we invested a good deal of time and energy in developing the many results we need from differential geometry. The time has now come to begin to reap the benefits of our investment, while at the same time developing some themes a little further for later exploitation. This chapter focuses on the celebrated volume-of-tubes formula of Wey1 [73, 168], which expresses the Lebesgue volume of a tube of radius ρ around a set embedded in ℝ or S(ℝ{sl}) in terms of the radius of the tube1 and the Lipschitz–Killing curvatures of (see Theorem 10.5.6). It is an interesting fact, particularly in view of the fact that this is a book about probability that is claimed to have applications to statistics, and despite the fact thatWeyl’s formula is today the basis of a large literature in geometry, that the origins of the volume-of-tubes formulas were inspired by a statistical problem. This problem, along with its solution due to Hotelling [79], were related to regression analysis and involved the one-dimensional volume-of-tubes problem on a sphere, not unrelated to the computation we shall do in a moment.
Pp. 23-35
Piecewise approximate implicitization: experiments using industrial data
Mohamed F. Shalaby; Jan B. Thomassen; Elmar M. Wurm; Tor Dokken; Bert Jüttler
In Chapters 7 and 8we invested a good deal of time and energy in developing the many results we need from differential geometry. The time has now come to begin to reap the benefits of our investment, while at the same time developing some themes a little further for later exploitation. This chapter focuses on the celebrated volume-of-tubes formula of Wey1 [73, 168], which expresses the Lebesgue volume of a tube of radius ρ around a set embedded in ℝ or S(ℝ{sl}) in terms of the radius of the tube1 and the Lipschitz–Killing curvatures of (see Theorem 10.5.6). It is an interesting fact, particularly in view of the fact that this is a book about probability that is claimed to have applications to statistics, and despite the fact thatWeyl’s formula is today the basis of a large literature in geometry, that the origins of the volume-of-tubes formulas were inspired by a statistical problem. This problem, along with its solution due to Hotelling [79], were related to regression analysis and involved the one-dimensional volume-of-tubes problem on a sphere, not unrelated to the computation we shall do in a moment.
Pp. 37-51
Computing with parameterized varieties
Daniel Lazard
In Chapters 7 and 8we invested a good deal of time and energy in developing the many results we need from differential geometry. The time has now come to begin to reap the benefits of our investment, while at the same time developing some themes a little further for later exploitation. This chapter focuses on the celebrated volume-of-tubes formula of Wey1 [73, 168], which expresses the Lebesgue volume of a tube of radius ρ around a set embedded in ℝ or S(ℝ{sl}) in terms of the radius of the tube1 and the Lipschitz–Killing curvatures of (see Theorem 10.5.6). It is an interesting fact, particularly in view of the fact that this is a book about probability that is claimed to have applications to statistics, and despite the fact thatWeyl’s formula is today the basis of a large literature in geometry, that the origins of the volume-of-tubes formulas were inspired by a statistical problem. This problem, along with its solution due to Hotelling [79], were related to regression analysis and involved the one-dimensional volume-of-tubes problem on a sphere, not unrelated to the computation we shall do in a moment.
Pp. 53-69
Implicitization and Distance Bounds
Martin Aigner; Ibolya Szilágyi; Bert Jüttler; Josef Schicho
In Chapters 7 and 8we invested a good deal of time and energy in developing the many results we need from differential geometry. The time has now come to begin to reap the benefits of our investment, while at the same time developing some themes a little further for later exploitation. This chapter focuses on the celebrated volume-of-tubes formula of Wey1 [73, 168], which expresses the Lebesgue volume of a tube of radius ρ around a set embedded in ℝ or S(ℝ{sl}) in terms of the radius of the tube1 and the Lipschitz–Killing curvatures of (see Theorem 10.5.6). It is an interesting fact, particularly in view of the fact that this is a book about probability that is claimed to have applications to statistics, and despite the fact thatWeyl’s formula is today the basis of a large literature in geometry, that the origins of the volume-of-tubes formulas were inspired by a statistical problem. This problem, along with its solution due to Hotelling [79], were related to regression analysis and involved the one-dimensional volume-of-tubes problem on a sphere, not unrelated to the computation we shall do in a moment.
Pp. 71-85
Singularities and their deformations: how they change the shape and view of objects
Alexandru Dimca
In Chapters 7 and 8we invested a good deal of time and energy in developing the many results we need from differential geometry. The time has now come to begin to reap the benefits of our investment, while at the same time developing some themes a little further for later exploitation. This chapter focuses on the celebrated volume-of-tubes formula of Wey1 [73, 168], which expresses the Lebesgue volume of a tube of radius ρ around a set embedded in ℝ or S(ℝ{sl}) in terms of the radius of the tube1 and the Lipschitz–Killing curvatures of (see Theorem 10.5.6). It is an interesting fact, particularly in view of the fact that this is a book about probability that is claimed to have applications to statistics, and despite the fact thatWeyl’s formula is today the basis of a large literature in geometry, that the origins of the volume-of-tubes formulas were inspired by a statistical problem. This problem, along with its solution due to Hotelling [79], were related to regression analysis and involved the one-dimensional volume-of-tubes problem on a sphere, not unrelated to the computation we shall do in a moment.
Pp. 87-101
Overview of topological properties of real algebraic surfaces
Viatcheslav Kharlamov
In Chapters 7 and 8we invested a good deal of time and energy in developing the many results we need from differential geometry. The time has now come to begin to reap the benefits of our investment, while at the same time developing some themes a little further for later exploitation. This chapter focuses on the celebrated volume-of-tubes formula of Wey1 [73, 168], which expresses the Lebesgue volume of a tube of radius ρ around a set embedded in ℝ or S(ℝ{sl}) in terms of the radius of the tube1 and the Lipschitz–Killing curvatures of (see Theorem 10.5.6). It is an interesting fact, particularly in view of the fact that this is a book about probability that is claimed to have applications to statistics, and despite the fact thatWeyl’s formula is today the basis of a large literature in geometry, that the origins of the volume-of-tubes formulas were inspired by a statistical problem. This problem, along with its solution due to Hotelling [79], were related to regression analysis and involved the one-dimensional volume-of-tubes problem on a sphere, not unrelated to the computation we shall do in a moment.
Pp. 103-117
Illustrating the classification of real cubic surfaces
Stephan Holzer; Oliver Labs
In Chapters 7 and 8we invested a good deal of time and energy in developing the many results we need from differential geometry. The time has now come to begin to reap the benefits of our investment, while at the same time developing some themes a little further for later exploitation. This chapter focuses on the celebrated volume-of-tubes formula of Wey1 [73, 168], which expresses the Lebesgue volume of a tube of radius ρ around a set embedded in ℝ or S(ℝ{sl}) in terms of the radius of the tube1 and the Lipschitz–Killing curvatures of (see Theorem 10.5.6). It is an interesting fact, particularly in view of the fact that this is a book about probability that is claimed to have applications to statistics, and despite the fact thatWeyl’s formula is today the basis of a large literature in geometry, that the origins of the volume-of-tubes formulas were inspired by a statistical problem. This problem, along with its solution due to Hotelling [79], were related to regression analysis and involved the one-dimensional volume-of-tubes problem on a sphere, not unrelated to the computation we shall do in a moment.
Pp. 119-134
Bézier patches on almost toric surfaces
Rimvydas Krasauskas
In Chapters 7 and 8we invested a good deal of time and energy in developing the many results we need from differential geometry. The time has now come to begin to reap the benefits of our investment, while at the same time developing some themes a little further for later exploitation. This chapter focuses on the celebrated volume-of-tubes formula of Wey1 [73, 168], which expresses the Lebesgue volume of a tube of radius ρ around a set embedded in ℝ or S(ℝ{sl}) in terms of the radius of the tube1 and the Lipschitz–Killing curvatures of (see Theorem 10.5.6). It is an interesting fact, particularly in view of the fact that this is a book about probability that is claimed to have applications to statistics, and despite the fact thatWeyl’s formula is today the basis of a large literature in geometry, that the origins of the volume-of-tubes formulas were inspired by a statistical problem. This problem, along with its solution due to Hotelling [79], were related to regression analysis and involved the one-dimensional volume-of-tubes problem on a sphere, not unrelated to the computation we shall do in a moment.
Pp. 135-150