Catálogo de publicaciones - libros

Compartir en
redes sociales


Supply Chain Management with APO: Structures, Modelling Approaches and Implementation of mySAP SCM 4.1

Jörg Thomas Dickersbach

Second Edition.

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Business Strategy/Leadership; Operations Management; IT in Business; Management; Information Systems Applications (incl. Internet)

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-3-540-26029-5

ISBN electrónico

978-3-540-24817-0

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer-Verlag Berlin Heidelberg 2006

Cobertura temática

Tabla de contenidos

Supply Chain Management Projects with APO

Jörg Thomas Dickersbach

The mechanosensory mechanisms in bone include (i) the cell system that is stimulated by external mechanical loading applied to the bone; (ii) the system that transduces that mechanical loading to a communicable signal; and (iii) the systems that transmit that signal to the effector cells for the maintenance of bone homeostasis and for strain adaptation of the bone structure. The effector cells are the osteoblasts and the osteoclasts. These systems and the mechanisms that they employ have not yet been unambiguously identified. A summary is presented of the current theoretical and experimental evidence suggesting that osteocytes are the principal mechanosensory cells of bone, that they are activated by the effects of fluid flowing through the osteocyte canaliculi, and that the electrically coupled three-dimensional network of osteocytes and lining cells is a communications system for the control of bone homeostasis and structural strain adaptation. A bone poroelastic (BP) model is employed to model the fluid flow behavior caused by the mechanical loading of bone. The similarities of the mechanotransduction system in bone with the mechanotransduction system used by the cells of the hearing system will be described. Both cell systems sense mechanical vibrations in a fluid domain.

Part I - Overview | Pp. 3-8

SCM Processes and APO Modules

Jörg Thomas Dickersbach

The mechanosensory mechanisms in bone include (i) the cell system that is stimulated by external mechanical loading applied to the bone; (ii) the system that transduces that mechanical loading to a communicable signal; and (iii) the systems that transmit that signal to the effector cells for the maintenance of bone homeostasis and for strain adaptation of the bone structure. The effector cells are the osteoblasts and the osteoclasts. These systems and the mechanisms that they employ have not yet been unambiguously identified. A summary is presented of the current theoretical and experimental evidence suggesting that osteocytes are the principal mechanosensory cells of bone, that they are activated by the effects of fluid flowing through the osteocyte canaliculi, and that the electrically coupled three-dimensional network of osteocytes and lining cells is a communications system for the control of bone homeostasis and structural strain adaptation. A bone poroelastic (BP) model is employed to model the fluid flow behavior caused by the mechanical loading of bone. The similarities of the mechanotransduction system in bone with the mechanotransduction system used by the cells of the hearing system will be described. Both cell systems sense mechanical vibrations in a fluid domain.

Part I - Overview | Pp. 9-13

APO Architecture

Jörg Thomas Dickersbach

The mechanosensory mechanisms in bone include (i) the cell system that is stimulated by external mechanical loading applied to the bone; (ii) the system that transduces that mechanical loading to a communicable signal; and (iii) the systems that transmit that signal to the effector cells for the maintenance of bone homeostasis and for strain adaptation of the bone structure. The effector cells are the osteoblasts and the osteoclasts. These systems and the mechanisms that they employ have not yet been unambiguously identified. A summary is presented of the current theoretical and experimental evidence suggesting that osteocytes are the principal mechanosensory cells of bone, that they are activated by the effects of fluid flowing through the osteocyte canaliculi, and that the electrically coupled three-dimensional network of osteocytes and lining cells is a communications system for the control of bone homeostasis and structural strain adaptation. A bone poroelastic (BP) model is employed to model the fluid flow behavior caused by the mechanical loading of bone. The similarities of the mechanotransduction system in bone with the mechanotransduction system used by the cells of the hearing system will be described. Both cell systems sense mechanical vibrations in a fluid domain.

Part I - Overview | Pp. 15-29

Demand Planning

Jörg Thomas Dickersbach

The mechanosensory mechanisms in bone include (i) the cell system that is stimulated by external mechanical loading applied to the bone; (ii) the system that transduces that mechanical loading to a communicable signal; and (iii) the systems that transmit that signal to the effector cells for the maintenance of bone homeostasis and for strain adaptation of the bone structure. The effector cells are the osteoblasts and the osteoclasts. These systems and the mechanisms that they employ have not yet been unambiguously identified. A summary is presented of the current theoretical and experimental evidence suggesting that osteocytes are the principal mechanosensory cells of bone, that they are activated by the effects of fluid flowing through the osteocyte canaliculi, and that the electrically coupled three-dimensional network of osteocytes and lining cells is a communications system for the control of bone homeostasis and structural strain adaptation. A bone poroelastic (BP) model is employed to model the fluid flow behavior caused by the mechanical loading of bone. The similarities of the mechanotransduction system in bone with the mechanotransduction system used by the cells of the hearing system will be described. Both cell systems sense mechanical vibrations in a fluid domain.

Part II - Demand Planning | Pp. 33-82

Forecast Consumption & Planning Strategies

Jörg Thomas Dickersbach

The mechanosensory mechanisms in bone include (i) the cell system that is stimulated by external mechanical loading applied to the bone; (ii) the system that transduces that mechanical loading to a communicable signal; and (iii) the systems that transmit that signal to the effector cells for the maintenance of bone homeostasis and for strain adaptation of the bone structure. The effector cells are the osteoblasts and the osteoclasts. These systems and the mechanisms that they employ have not yet been unambiguously identified. A summary is presented of the current theoretical and experimental evidence suggesting that osteocytes are the principal mechanosensory cells of bone, that they are activated by the effects of fluid flowing through the osteocyte canaliculi, and that the electrically coupled three-dimensional network of osteocytes and lining cells is a communications system for the control of bone homeostasis and structural strain adaptation. A bone poroelastic (BP) model is employed to model the fluid flow behavior caused by the mechanical loading of bone. The similarities of the mechanotransduction system in bone with the mechanotransduction system used by the cells of the hearing system will be described. Both cell systems sense mechanical vibrations in a fluid domain.

Part II - Demand Planning | Pp. 83-92

Order Fulfilment Overview

Jörg Thomas Dickersbach

The mechanosensory mechanisms in bone include (i) the cell system that is stimulated by external mechanical loading applied to the bone; (ii) the system that transduces that mechanical loading to a communicable signal; and (iii) the systems that transmit that signal to the effector cells for the maintenance of bone homeostasis and for strain adaptation of the bone structure. The effector cells are the osteoblasts and the osteoclasts. These systems and the mechanisms that they employ have not yet been unambiguously identified. A summary is presented of the current theoretical and experimental evidence suggesting that osteocytes are the principal mechanosensory cells of bone, that they are activated by the effects of fluid flowing through the osteocyte canaliculi, and that the electrically coupled three-dimensional network of osteocytes and lining cells is a communications system for the control of bone homeostasis and structural strain adaptation. A bone poroelastic (BP) model is employed to model the fluid flow behavior caused by the mechanical loading of bone. The similarities of the mechanotransduction system in bone with the mechanotransduction system used by the cells of the hearing system will be described. Both cell systems sense mechanical vibrations in a fluid domain.

Part III - Order Fulfilment | Pp. 95-96

Sales

Jörg Thomas Dickersbach

The mechanosensory mechanisms in bone include (i) the cell system that is stimulated by external mechanical loading applied to the bone; (ii) the system that transduces that mechanical loading to a communicable signal; and (iii) the systems that transmit that signal to the effector cells for the maintenance of bone homeostasis and for strain adaptation of the bone structure. The effector cells are the osteoblasts and the osteoclasts. These systems and the mechanisms that they employ have not yet been unambiguously identified. A summary is presented of the current theoretical and experimental evidence suggesting that osteocytes are the principal mechanosensory cells of bone, that they are activated by the effects of fluid flowing through the osteocyte canaliculi, and that the electrically coupled three-dimensional network of osteocytes and lining cells is a communications system for the control of bone homeostasis and structural strain adaptation. A bone poroelastic (BP) model is employed to model the fluid flow behavior caused by the mechanical loading of bone. The similarities of the mechanotransduction system in bone with the mechanotransduction system used by the cells of the hearing system will be described. Both cell systems sense mechanical vibrations in a fluid domain.

Part III - Order Fulfilment | Pp. 97-140

Transportation Planning

Jörg Thomas Dickersbach

The mechanosensory mechanisms in bone include (i) the cell system that is stimulated by external mechanical loading applied to the bone; (ii) the system that transduces that mechanical loading to a communicable signal; and (iii) the systems that transmit that signal to the effector cells for the maintenance of bone homeostasis and for strain adaptation of the bone structure. The effector cells are the osteoblasts and the osteoclasts. These systems and the mechanisms that they employ have not yet been unambiguously identified. A summary is presented of the current theoretical and experimental evidence suggesting that osteocytes are the principal mechanosensory cells of bone, that they are activated by the effects of fluid flowing through the osteocyte canaliculi, and that the electrically coupled three-dimensional network of osteocytes and lining cells is a communications system for the control of bone homeostasis and structural strain adaptation. A bone poroelastic (BP) model is employed to model the fluid flow behavior caused by the mechanical loading of bone. The similarities of the mechanotransduction system in bone with the mechanotransduction system used by the cells of the hearing system will be described. Both cell systems sense mechanical vibrations in a fluid domain.

Part III - Order Fulfilment | Pp. 141-158

Distribution & Supply Chain Planning Overview

Jörg Thomas Dickersbach

The mechanosensory mechanisms in bone include (i) the cell system that is stimulated by external mechanical loading applied to the bone; (ii) the system that transduces that mechanical loading to a communicable signal; and (iii) the systems that transmit that signal to the effector cells for the maintenance of bone homeostasis and for strain adaptation of the bone structure. The effector cells are the osteoblasts and the osteoclasts. These systems and the mechanisms that they employ have not yet been unambiguously identified. A summary is presented of the current theoretical and experimental evidence suggesting that osteocytes are the principal mechanosensory cells of bone, that they are activated by the effects of fluid flowing through the osteocyte canaliculi, and that the electrically coupled three-dimensional network of osteocytes and lining cells is a communications system for the control of bone homeostasis and structural strain adaptation. A bone poroelastic (BP) model is employed to model the fluid flow behavior caused by the mechanical loading of bone. The similarities of the mechanotransduction system in bone with the mechanotransduction system used by the cells of the hearing system will be described. Both cell systems sense mechanical vibrations in a fluid domain.

Part IV - Distribution | Pp. 161-177

Integrated Distribution & Production Planning

Jörg Thomas Dickersbach

The mechanosensory mechanisms in bone include (i) the cell system that is stimulated by external mechanical loading applied to the bone; (ii) the system that transduces that mechanical loading to a communicable signal; and (iii) the systems that transmit that signal to the effector cells for the maintenance of bone homeostasis and for strain adaptation of the bone structure. The effector cells are the osteoblasts and the osteoclasts. These systems and the mechanisms that they employ have not yet been unambiguously identified. A summary is presented of the current theoretical and experimental evidence suggesting that osteocytes are the principal mechanosensory cells of bone, that they are activated by the effects of fluid flowing through the osteocyte canaliculi, and that the electrically coupled three-dimensional network of osteocytes and lining cells is a communications system for the control of bone homeostasis and structural strain adaptation. A bone poroelastic (BP) model is employed to model the fluid flow behavior caused by the mechanical loading of bone. The similarities of the mechanotransduction system in bone with the mechanotransduction system used by the cells of the hearing system will be described. Both cell systems sense mechanical vibrations in a fluid domain.

Part IV - Distribution | Pp. 179-203