Catálogo de publicaciones - libros

Compartir en
redes sociales


Pseudosolution of Linear Functional Equations: Parameters Estimation of Linear Functional Relationships

Alexander S. Mechenov

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Computational Mathematics and Numerical Analysis; Econometrics

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2005 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-0-387-24505-8

ISBN electrónico

978-0-387-24506-5

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Science+Business Media, Inc. 2005

Tabla de contenidos

Systems of Linear Algebraic Equations

Alexander S. Mechenov

In chapter 1 the basic problem of the confluent, confluent-variance and confluent-regression analysis of passive experiment: a problem of estimation of unknown parameters is solved algebraically. The problem of the robust estimation of normal parameters of incomplete-rank confluent and confluent-regression model is solved also.

Pp. 1-92

Systems of Linear Algebraic Equations

Alexander S. Mechenov

In the second chapter, the models of the passive-active-regression experiment are constructed. A picture of exposition of experimental researches in frameworks of the confluent-influent-regression models is finished. That allows the contributor to understand better to itself a picture of researches and to carry out correctly parameters' estimation. The method of the effective correction of rounding errors is constructed also for the procedure of the numerical solution of the SLAE and of the numerical computation of parameters' estimates. The regularized estimation methods for a case of the incomplete-rank matrices are developed.

Pp. 93-140

Linear Integral Equations

Alexander S. Mechenov

In this chapter we allow for deterministic and random errors in variational methods that construct the pseudosolution of linear integral equations of the second kind and the regularized pseudosolution and quasisolution of the linear integral equations of the first kind. We consider both passive errors (i.e., errors during observation or measurement) in the right-hand side and passive or active errors (i.e., errors during specification) in the core. We consider the representation methods of the a priori information on a sought pseudosolution using the mixed models and the statistical regularization methods. We construct the numerical realization of these methods.

Pp. 141-211