Catálogo de publicaciones - libros
Pseudosolution of Linear Functional Equations: Parameters Estimation of Linear Functional Relationships
Alexander S. Mechenov
Resumen/Descripción – provisto por la editorial
No disponible.
Palabras clave – provistas por la editorial
Computational Mathematics and Numerical Analysis; Econometrics
Disponibilidad
| Institución detectada | Año de publicación | Navegá | Descargá | Solicitá |
|---|---|---|---|---|
| No detectada | 2005 | SpringerLink |
Información
Tipo de recurso:
libros
ISBN impreso
978-0-387-24505-8
ISBN electrónico
978-0-387-24506-5
Editor responsable
Springer Nature
País de edición
Reino Unido
Fecha de publicación
2005
Información sobre derechos de publicación
© Springer Science+Business Media, Inc. 2005
Cobertura temática
Tabla de contenidos
Systems of Linear Algebraic Equations
Alexander S. Mechenov
In chapter 1 the basic problem of the confluent, confluent-variance and confluent-regression analysis of passive experiment: a problem of estimation of unknown parameters is solved algebraically. The problem of the robust estimation of normal parameters of incomplete-rank confluent and confluent-regression model is solved also.
Pp. 1-92
Systems of Linear Algebraic Equations
Alexander S. Mechenov
In the second chapter, the models of the passive-active-regression experiment are constructed. A picture of exposition of experimental researches in frameworks of the confluent-influent-regression models is finished. That allows the contributor to understand better to itself a picture of researches and to carry out correctly parameters' estimation. The method of the effective correction of rounding errors is constructed also for the procedure of the numerical solution of the SLAE and of the numerical computation of parameters' estimates. The regularized estimation methods for a case of the incomplete-rank matrices are developed.
Pp. 93-140
Linear Integral Equations
Alexander S. Mechenov
In this chapter we allow for deterministic and random errors in variational methods that construct the pseudosolution of linear integral equations of the second kind and the regularized pseudosolution and quasisolution of the linear integral equations of the first kind. We consider both passive errors (i.e., errors during observation or measurement) in the right-hand side and passive or active errors (i.e., errors during specification) in the core. We consider the representation methods of the a priori information on a sought pseudosolution using the mixed models and the statistical regularization methods. We construct the numerical realization of these methods.
Pp. 141-211