Catálogo de publicaciones - libros

Compartir en
redes sociales


Bioproducts from canada's forests: New Partnerships in the Bioeconomy

Suzanne Wetzel Luc C. Duchesne Michael F. Laporte

Resumen/Descripción – provisto por la editorial

No disponible.

Palabras clave – provistas por la editorial

Climate Change; Forestry; Forestry Management; Renewable and Green Energy; Environmental Engineering/Biotechnology

Disponibilidad
Institución detectada Año de publicación Navegá Descargá Solicitá
No detectada 2006 SpringerLink

Información

Tipo de recurso:

libros

ISBN impreso

978-1-4020-4991-0

ISBN electrónico

978-1-4020-4992-7

Editor responsable

Springer Nature

País de edición

Reino Unido

Fecha de publicación

Información sobre derechos de publicación

© Springer Netherlands 2006

Tabla de contenidos

Forests as a Source of Bioproducts

Suzanne Wetzel; Luc C. Duchesne; Michael F. Laporte

Dust events are commonly observed every year and have been shown to strongly impact on the tropospheric ozone budget. This impact arises from the uptake of different gases, such as NO (mainly as HNO or NO), on the solid surfaces exhibited by the uplifted minerals. While such “dark” processes have been deeply studied over the last years, dust particles contain a series of oxides that may be initiate photochemical process that have not been considered so far. In fact, in addition to quartz, illite, montmorillonite, and calcite, mineral dusts are heterogeneous mixtures of mineral oxides containing small levels of TiO. In order to mimic the properties that these oxides confer to mineral Saharan dust, TiO and SiO were mixed and their heterogeneous reactions with NO studied using a horizontal wall flow tube. In addition, experiments were performed with real Arizona test dust in order to assess the importance of photochemical reactions under realistic atmospheric conditions. The effect of light (in the 380-700 nm range), temperature (in the 288-303 K range) and relative humidity have been determined. The uptake coefficient on TiO mixing in SiO increases with temperature and decreases with relative humidity. We found that despite its very low abundance, titanium dioxide (TiO) will strongly favour the photo-conversion of NO on mineral dust, nitrogen dioxide being otherwise quite unreactive on these minerals. This photoenhanced uptake of gases will in turn impact on the ozone and/or HO budget during a dust event. In addition, such photo enhanced process will affect the nitrate content of the dust particles, impacting on the optical properties of the aerosols and their associated climatic impact. We therefore exemplified, on mineral dust, that photochemical conversion on solid surfaces encountered in the troposphere needs to be considered an important process of wide impact due to the ubiquitous presence of minerals in our environment as it will change the level of photo-oxidant and aerosol optical properties.

Pp. 1-33

Biofuels and Bioenergy

Suzanne Wetzel; Luc C. Duchesne; Michael F. Laporte

Dust events are commonly observed every year and have been shown to strongly impact on the tropospheric ozone budget. This impact arises from the uptake of different gases, such as NO (mainly as HNO or NO), on the solid surfaces exhibited by the uplifted minerals. While such “dark” processes have been deeply studied over the last years, dust particles contain a series of oxides that may be initiate photochemical process that have not been considered so far. In fact, in addition to quartz, illite, montmorillonite, and calcite, mineral dusts are heterogeneous mixtures of mineral oxides containing small levels of TiO. In order to mimic the properties that these oxides confer to mineral Saharan dust, TiO and SiO were mixed and their heterogeneous reactions with NO studied using a horizontal wall flow tube. In addition, experiments were performed with real Arizona test dust in order to assess the importance of photochemical reactions under realistic atmospheric conditions. The effect of light (in the 380-700 nm range), temperature (in the 288-303 K range) and relative humidity have been determined. The uptake coefficient on TiO mixing in SiO increases with temperature and decreases with relative humidity. We found that despite its very low abundance, titanium dioxide (TiO) will strongly favour the photo-conversion of NO on mineral dust, nitrogen dioxide being otherwise quite unreactive on these minerals. This photoenhanced uptake of gases will in turn impact on the ozone and/or HO budget during a dust event. In addition, such photo enhanced process will affect the nitrate content of the dust particles, impacting on the optical properties of the aerosols and their associated climatic impact. We therefore exemplified, on mineral dust, that photochemical conversion on solid surfaces encountered in the troposphere needs to be considered an important process of wide impact due to the ubiquitous presence of minerals in our environment as it will change the level of photo-oxidant and aerosol optical properties.

Pp. 35-60

Biochemicals

Suzanne Wetzel; Luc C. Duchesne; Michael F. Laporte

Dust events are commonly observed every year and have been shown to strongly impact on the tropospheric ozone budget. This impact arises from the uptake of different gases, such as NO (mainly as HNO or NO), on the solid surfaces exhibited by the uplifted minerals. While such “dark” processes have been deeply studied over the last years, dust particles contain a series of oxides that may be initiate photochemical process that have not been considered so far. In fact, in addition to quartz, illite, montmorillonite, and calcite, mineral dusts are heterogeneous mixtures of mineral oxides containing small levels of TiO. In order to mimic the properties that these oxides confer to mineral Saharan dust, TiO and SiO were mixed and their heterogeneous reactions with NO studied using a horizontal wall flow tube. In addition, experiments were performed with real Arizona test dust in order to assess the importance of photochemical reactions under realistic atmospheric conditions. The effect of light (in the 380-700 nm range), temperature (in the 288-303 K range) and relative humidity have been determined. The uptake coefficient on TiO mixing in SiO increases with temperature and decreases with relative humidity. We found that despite its very low abundance, titanium dioxide (TiO) will strongly favour the photo-conversion of NO on mineral dust, nitrogen dioxide being otherwise quite unreactive on these minerals. This photoenhanced uptake of gases will in turn impact on the ozone and/or HO budget during a dust event. In addition, such photo enhanced process will affect the nitrate content of the dust particles, impacting on the optical properties of the aerosols and their associated climatic impact. We therefore exemplified, on mineral dust, that photochemical conversion on solid surfaces encountered in the troposphere needs to be considered an important process of wide impact due to the ubiquitous presence of minerals in our environment as it will change the level of photo-oxidant and aerosol optical properties.

Pp. 61-69

Agroforestry

Suzanne Wetzel; Luc C. Duchesne; Michael F. Laporte

Dust events are commonly observed every year and have been shown to strongly impact on the tropospheric ozone budget. This impact arises from the uptake of different gases, such as NO (mainly as HNO or NO), on the solid surfaces exhibited by the uplifted minerals. While such “dark” processes have been deeply studied over the last years, dust particles contain a series of oxides that may be initiate photochemical process that have not been considered so far. In fact, in addition to quartz, illite, montmorillonite, and calcite, mineral dusts are heterogeneous mixtures of mineral oxides containing small levels of TiO. In order to mimic the properties that these oxides confer to mineral Saharan dust, TiO and SiO were mixed and their heterogeneous reactions with NO studied using a horizontal wall flow tube. In addition, experiments were performed with real Arizona test dust in order to assess the importance of photochemical reactions under realistic atmospheric conditions. The effect of light (in the 380-700 nm range), temperature (in the 288-303 K range) and relative humidity have been determined. The uptake coefficient on TiO mixing in SiO increases with temperature and decreases with relative humidity. We found that despite its very low abundance, titanium dioxide (TiO) will strongly favour the photo-conversion of NO on mineral dust, nitrogen dioxide being otherwise quite unreactive on these minerals. This photoenhanced uptake of gases will in turn impact on the ozone and/or HO budget during a dust event. In addition, such photo enhanced process will affect the nitrate content of the dust particles, impacting on the optical properties of the aerosols and their associated climatic impact. We therefore exemplified, on mineral dust, that photochemical conversion on solid surfaces encountered in the troposphere needs to be considered an important process of wide impact due to the ubiquitous presence of minerals in our environment as it will change the level of photo-oxidant and aerosol optical properties.

Pp. 71-88

Foods from the Forest

Suzanne Wetzel; Luc C. Duchesne; Michael F. Laporte

Dust events are commonly observed every year and have been shown to strongly impact on the tropospheric ozone budget. This impact arises from the uptake of different gases, such as NO (mainly as HNO or NO), on the solid surfaces exhibited by the uplifted minerals. While such “dark” processes have been deeply studied over the last years, dust particles contain a series of oxides that may be initiate photochemical process that have not been considered so far. In fact, in addition to quartz, illite, montmorillonite, and calcite, mineral dusts are heterogeneous mixtures of mineral oxides containing small levels of TiO. In order to mimic the properties that these oxides confer to mineral Saharan dust, TiO and SiO were mixed and their heterogeneous reactions with NO studied using a horizontal wall flow tube. In addition, experiments were performed with real Arizona test dust in order to assess the importance of photochemical reactions under realistic atmospheric conditions. The effect of light (in the 380-700 nm range), temperature (in the 288-303 K range) and relative humidity have been determined. The uptake coefficient on TiO mixing in SiO increases with temperature and decreases with relative humidity. We found that despite its very low abundance, titanium dioxide (TiO) will strongly favour the photo-conversion of NO on mineral dust, nitrogen dioxide being otherwise quite unreactive on these minerals. This photoenhanced uptake of gases will in turn impact on the ozone and/or HO budget during a dust event. In addition, such photo enhanced process will affect the nitrate content of the dust particles, impacting on the optical properties of the aerosols and their associated climatic impact. We therefore exemplified, on mineral dust, that photochemical conversion on solid surfaces encountered in the troposphere needs to be considered an important process of wide impact due to the ubiquitous presence of minerals in our environment as it will change the level of photo-oxidant and aerosol optical properties.

Pp. 89-112

Nutraceuticals from the Forest

Suzanne Wetzel; Luc C. Duchesne; Michael F. Laporte

Dust events are commonly observed every year and have been shown to strongly impact on the tropospheric ozone budget. This impact arises from the uptake of different gases, such as NO (mainly as HNO or NO), on the solid surfaces exhibited by the uplifted minerals. While such “dark” processes have been deeply studied over the last years, dust particles contain a series of oxides that may be initiate photochemical process that have not been considered so far. In fact, in addition to quartz, illite, montmorillonite, and calcite, mineral dusts are heterogeneous mixtures of mineral oxides containing small levels of TiO. In order to mimic the properties that these oxides confer to mineral Saharan dust, TiO and SiO were mixed and their heterogeneous reactions with NO studied using a horizontal wall flow tube. In addition, experiments were performed with real Arizona test dust in order to assess the importance of photochemical reactions under realistic atmospheric conditions. The effect of light (in the 380-700 nm range), temperature (in the 288-303 K range) and relative humidity have been determined. The uptake coefficient on TiO mixing in SiO increases with temperature and decreases with relative humidity. We found that despite its very low abundance, titanium dioxide (TiO) will strongly favour the photo-conversion of NO on mineral dust, nitrogen dioxide being otherwise quite unreactive on these minerals. This photoenhanced uptake of gases will in turn impact on the ozone and/or HO budget during a dust event. In addition, such photo enhanced process will affect the nitrate content of the dust particles, impacting on the optical properties of the aerosols and their associated climatic impact. We therefore exemplified, on mineral dust, that photochemical conversion on solid surfaces encountered in the troposphere needs to be considered an important process of wide impact due to the ubiquitous presence of minerals in our environment as it will change the level of photo-oxidant and aerosol optical properties.

Pp. 113-130

Pharmaceuticals from the Forest

Suzanne Wetzel; Luc C. Duchesne; Michael F. Laporte

Dust events are commonly observed every year and have been shown to strongly impact on the tropospheric ozone budget. This impact arises from the uptake of different gases, such as NO (mainly as HNO or NO), on the solid surfaces exhibited by the uplifted minerals. While such “dark” processes have been deeply studied over the last years, dust particles contain a series of oxides that may be initiate photochemical process that have not been considered so far. In fact, in addition to quartz, illite, montmorillonite, and calcite, mineral dusts are heterogeneous mixtures of mineral oxides containing small levels of TiO. In order to mimic the properties that these oxides confer to mineral Saharan dust, TiO and SiO were mixed and their heterogeneous reactions with NO studied using a horizontal wall flow tube. In addition, experiments were performed with real Arizona test dust in order to assess the importance of photochemical reactions under realistic atmospheric conditions. The effect of light (in the 380-700 nm range), temperature (in the 288-303 K range) and relative humidity have been determined. The uptake coefficient on TiO mixing in SiO increases with temperature and decreases with relative humidity. We found that despite its very low abundance, titanium dioxide (TiO) will strongly favour the photo-conversion of NO on mineral dust, nitrogen dioxide being otherwise quite unreactive on these minerals. This photoenhanced uptake of gases will in turn impact on the ozone and/or HO budget during a dust event. In addition, such photo enhanced process will affect the nitrate content of the dust particles, impacting on the optical properties of the aerosols and their associated climatic impact. We therefore exemplified, on mineral dust, that photochemical conversion on solid surfaces encountered in the troposphere needs to be considered an important process of wide impact due to the ubiquitous presence of minerals in our environment as it will change the level of photo-oxidant and aerosol optical properties.

Pp. 131-146

Decorative and Aesthetic Products

Suzanne Wetzel; Luc C. Duchesne; Michael F. Laporte

Dust events are commonly observed every year and have been shown to strongly impact on the tropospheric ozone budget. This impact arises from the uptake of different gases, such as NO (mainly as HNO or NO), on the solid surfaces exhibited by the uplifted minerals. While such “dark” processes have been deeply studied over the last years, dust particles contain a series of oxides that may be initiate photochemical process that have not been considered so far. In fact, in addition to quartz, illite, montmorillonite, and calcite, mineral dusts are heterogeneous mixtures of mineral oxides containing small levels of TiO. In order to mimic the properties that these oxides confer to mineral Saharan dust, TiO and SiO were mixed and their heterogeneous reactions with NO studied using a horizontal wall flow tube. In addition, experiments were performed with real Arizona test dust in order to assess the importance of photochemical reactions under realistic atmospheric conditions. The effect of light (in the 380-700 nm range), temperature (in the 288-303 K range) and relative humidity have been determined. The uptake coefficient on TiO mixing in SiO increases with temperature and decreases with relative humidity. We found that despite its very low abundance, titanium dioxide (TiO) will strongly favour the photo-conversion of NO on mineral dust, nitrogen dioxide being otherwise quite unreactive on these minerals. This photoenhanced uptake of gases will in turn impact on the ozone and/or HO budget during a dust event. In addition, such photo enhanced process will affect the nitrate content of the dust particles, impacting on the optical properties of the aerosols and their associated climatic impact. We therefore exemplified, on mineral dust, that photochemical conversion on solid surfaces encountered in the troposphere needs to be considered an important process of wide impact due to the ubiquitous presence of minerals in our environment as it will change the level of photo-oxidant and aerosol optical properties.

Pp. 147-162

Recreation and Other Forest Values

Suzanne Wetzel; Luc C. Duchesne; Michael F. Laporte

Dust events are commonly observed every year and have been shown to strongly impact on the tropospheric ozone budget. This impact arises from the uptake of different gases, such as NO (mainly as HNO or NO), on the solid surfaces exhibited by the uplifted minerals. While such “dark” processes have been deeply studied over the last years, dust particles contain a series of oxides that may be initiate photochemical process that have not been considered so far. In fact, in addition to quartz, illite, montmorillonite, and calcite, mineral dusts are heterogeneous mixtures of mineral oxides containing small levels of TiO. In order to mimic the properties that these oxides confer to mineral Saharan dust, TiO and SiO were mixed and their heterogeneous reactions with NO studied using a horizontal wall flow tube. In addition, experiments were performed with real Arizona test dust in order to assess the importance of photochemical reactions under realistic atmospheric conditions. The effect of light (in the 380-700 nm range), temperature (in the 288-303 K range) and relative humidity have been determined. The uptake coefficient on TiO mixing in SiO increases with temperature and decreases with relative humidity. We found that despite its very low abundance, titanium dioxide (TiO) will strongly favour the photo-conversion of NO on mineral dust, nitrogen dioxide being otherwise quite unreactive on these minerals. This photoenhanced uptake of gases will in turn impact on the ozone and/or HO budget during a dust event. In addition, such photo enhanced process will affect the nitrate content of the dust particles, impacting on the optical properties of the aerosols and their associated climatic impact. We therefore exemplified, on mineral dust, that photochemical conversion on solid surfaces encountered in the troposphere needs to be considered an important process of wide impact due to the ubiquitous presence of minerals in our environment as it will change the level of photo-oxidant and aerosol optical properties.

Pp. 163-171

Protecting Forest Biomass from Pests: Current Challenges

Suzanne Wetzel; Luc C. Duchesne; Michael F. Laporte

Dust events are commonly observed every year and have been shown to strongly impact on the tropospheric ozone budget. This impact arises from the uptake of different gases, such as NO (mainly as HNO or NO), on the solid surfaces exhibited by the uplifted minerals. While such “dark” processes have been deeply studied over the last years, dust particles contain a series of oxides that may be initiate photochemical process that have not been considered so far. In fact, in addition to quartz, illite, montmorillonite, and calcite, mineral dusts are heterogeneous mixtures of mineral oxides containing small levels of TiO. In order to mimic the properties that these oxides confer to mineral Saharan dust, TiO and SiO were mixed and their heterogeneous reactions with NO studied using a horizontal wall flow tube. In addition, experiments were performed with real Arizona test dust in order to assess the importance of photochemical reactions under realistic atmospheric conditions. The effect of light (in the 380-700 nm range), temperature (in the 288-303 K range) and relative humidity have been determined. The uptake coefficient on TiO mixing in SiO increases with temperature and decreases with relative humidity. We found that despite its very low abundance, titanium dioxide (TiO) will strongly favour the photo-conversion of NO on mineral dust, nitrogen dioxide being otherwise quite unreactive on these minerals. This photoenhanced uptake of gases will in turn impact on the ozone and/or HO budget during a dust event. In addition, such photo enhanced process will affect the nitrate content of the dust particles, impacting on the optical properties of the aerosols and their associated climatic impact. We therefore exemplified, on mineral dust, that photochemical conversion on solid surfaces encountered in the troposphere needs to be considered an important process of wide impact due to the ubiquitous presence of minerals in our environment as it will change the level of photo-oxidant and aerosol optical properties.

Pp. 173-183